Copyright © 2018 Kenneth Cosh.

All rights reserved. This book or any portion thereof may not be reproduced or used in any manner
whatsoever without the express written permission of the publisher except for the use of brief quotations in a
book review.

ISBN: 978-616-398-352-7

Printed by Kenneth Cosh in Thailand. Published by Chiang Mai University.

First printing, 2018.

Chiang Mai University 239 Huay Kaew Road. Chiang Mai, 50200

www.kencosh.com

Preface

This book provides an introduction to Web Programming languages, beginning with the basics of
Hypertext Markup Language (HTML). No previous experience is assumed, although some basic
programming concepts would be an advantage. The target audience is for second year undergraduate
students within a computing related discipline, although the book should be accessible for any readers.

The book is broken into four parts, beginning with the basics of static webpages. As well as HTML
the first part covers Cascading Style Sheets (CSS), which are used for styling a webpage and positioning
elements on it. The second part focuses on Server-side scripting, where the WAMP stack is used
(Windows, Apache, MySQL and PHP). This part uses PHP to power the server and connect with a MySQL
database. Part three deals with Client-side scripting, covering JavaScript. As well as introducing pure
JavaScript, the JQuery library is discussed with its tools for handling browser events and manipulating the
DOM (Document Object Model). Asynchronous JavaScript is also covered, allowing different elements in
the user interface to be loaded separately. The final part covers modern web development technologies,
where first he features of HTML5 are introduced. Sometimes today JavaScript is being used everywhere,
on the server as well as on the client. Here Node.js is introduced to power a server, as part of the MEAN
development stack (MongoDB, Express.js, Angular and Node.js). Express.js is a lightweight framework for
Node.js on the server. With modern data demands, MongoDB is introduced as an alternative database.

Finaly Angular is introduced, an increasingly popular front-end framework.

Throughout the book there are code examples to demonstrate the concepts discussed, so readers

are encouraged to practice their skills as they take their first steps towards becoming a Web Developer.

Table of Contents

Part 1 :- Foundations of Static Webpages (HTML & CSS)

Chapter 1 - Introducing HTML
1.1 Basic HTML Tags

1.2 HTML Tables

1.3 Images and HTML Attributes
1.4 Hypertext & Links

1.5 HTML Comments

Chapter 2 - CSS for Style
2.1 Why Use CSS?

2.2 Introducing CSS

2.3 Selectors

2.4 & <Div>

2.5 Where to CSS?

2.6 More on Selectors
2.7 CSS Properties

Chapter 3 - CSS for Layout

3.1 The Position Property

3.2 Float & Clear

3.3 Borders, Margins & Padding
3.4 A Simple CSS Image Gallery
3.5 A Simple CSS Hover Box

Part 2 :- Server Side Scripting with PHP

Chapter 4 - Introducing PHP

4.1 Setting Up A Webserver

4.2 PHP Basic Syntax

4.3 PHP Variables

4.4 PHP Operators

4.5 PHP Flow Control

4.6 PHP Form Validation Example

Chapter 5 - PHP Functions and Objects
5.1 Array Functions

5.2 Mathematical Functions

5.3 Date and Time Functions

5.4 Defining Your Own Functions

5.5 Include and Require

5.6 Objects in PHP

5.7 Creating a Calendar

O oo NUN

12
13
14
17
19
19
20
21

27
29
32
35
38
39

43

44
45
46
47
49
50
52

58
59
64
67
68
69
70
71

Chapter 6 - PHP Files & MySQL Databases
6.1 PHP and Files

6.2 Introducing MySQL and phpmyadmin
6.3 Structured Query Language

6.4 MysQLi

Chapter 7 - Cookies, Sessions & Security
7.1 Cookies

7.2 Sessions

7.3 PHP Login Script

7.4 Online Security Threats

Part 3 :- Client Side Scripting with JavaScript and JQuery

Chapter 8 - Introducing JavaScript
8.1 Variables

8.2 Operators

8.3 Control Statements

8.4 Arrays

8.5 Functions

8.6 getElementByld()

8.7 Form Validation Example

Chapter 9 - Introducing JQuery
9.1 Handling Events with JQuery
9.2 JQuery Effects

Chapter 10 - JQuery and the DOM

10.1 The Document Object Model

10.2 Manipulating the Document Object Model
10.3 Navigating the Document Object Model

Chapter 11 - Asynchronous JavaScript and JQuery Ul
11.1 Introducing AJAX

11.2 JQuery and AJAX

11.3 JQuery Ul

Part 4 :- Modern Web Development Technologies

Chapter 12 - HTML5

12.1 New Tags (and Deprecated Tags)
12.2 Audio & Video

12.3 The Canvas

12.4 Geolocation

12.5 Local Storage

12.6 Web Workers

77
78
81
84
87

92
93
95
95
103

105

106
108
110
111
113
115
116
118

122
125
129

137
138
140
145

155
156
158
160

167

168
169
172
173
177
178
180

Chapter 13 — Introducing Node.js
13.1 PHP vs Node.js

13.2 Setting up Node.js

13.3 Events in Node.js

13.4 Node Package Manager (NPM)
13.5 Sending Emails with Node.js

Chapter 14 — Node.js, MySQL & MongoDB
14.1 Node.js & MySQL

14.2 Node.js & MongoDB

14.3 MySQL vs MongoDB

Chapter 15 — Express.js

15.1 Getting Started with Express.js
15.2 Routing with Express.js

15.3 Creating an APl with Express.js
15.4 Uploading Files with Express.js

Chapter 16 — Angular

16.1 Getting Started with Angular
16.2 Components in Angular

16.3 Adding a TypeScript Class

16.4 Pipes and Two-Way Data Binding in Angular

16.5 Event Binding in Angular
16.6 Services in Angular
16.7 Routing in Angular

Vi

183
184
185
189
190
192

194
195
199
205

207
208
209
211
215

218
220
222
224
227
228
229
233

List of Tables

1.1 Key HTML Tags 4
1.2 Style Related HTML Tags 5
2.1 Text Styling Properties 22
3.1 The Four Positioning Properties And Their Effects 32
4.1 String Related Functions in PHP 49
4.2 Arithmetic Operators in PHP 49
4.3 Assignment Operators in PHP 49
4.4 Logical Operators in PHP 50
5.1 Sorting Arrays in PHP 64
5.2 Trigonometry Functions in PHP 66
5.3 Parameters for the PHP date() Function 68
6.1 PHP File Open Modes 78
8.1 Arithmetic Operators in JavaScript 110
8.2 Assignment Operators in JavaScript 110
8.3 Logical Operators in JavaScript 110
8.4 Array Functions in JavaScript 116
9.1 Events that can be Handled by JQuery 125
9.2 Fade Effects in JQuery 131
9.3 Slide Effects in JQuery 132
10.1 Adding Elements to a Page with JQuery 142
10.2 Traversing Across the DOM 150
11.1 The readyState Property of XMLHttpRequest 158
12.1 HTMLS Semantic Elements 171
14.1 MongoDB Query Comparison Operators 204

vii

List of Figures

1.1 My First Webpage 4
1.2 My Second Webpage 5
2.1 A CSS styled table 14
2.2 A Simple CSS Style Example 17
2.3 An Example Of A Class Selector 18
24 An Example Of ID Selectors and Layers 19
3.1 Basic CSS Positioning 29
3.2 Static And Relative Positioning | 30
33 Static And Relative Positioning Il 30
3.4 Relative And Absolute Positioning 31
3.5 Problem With Relative Positioning 33
3.6 An Example Of Float 34
3.7 The Clear Property 35
3.8 Different Border Styles 35
3.9 The Box Model 36
3.10 A Simple CSS Image Gallery 39
3.11 A Simple CSS Hover Box 40
4.1 A PHP Request 45
4.2 Hello World in PHP 46
43 A Simple Form 53
4.4 A Welcome Page using S_POST 53
4.5 A Welcome Page using S_GET 54
4.6 The POST Array 55
5.1 print_r() in PHP 60
5.2 array_count_values() in PHP 60
5.3 array_diff() in PHP 61
5.4 array_intersect() in PHP 61
5.5 array_flip() in PHP 62
5.6 array_reverse() in PHP 62
5.7 shuffle() in PHP 63
5.8 Sorted Array in PHP 64
5.9 All 6 Different Types of Sort in PHP 64
6.1 PHPMyAdmin Menu 82
6.2 Creating a Database in PHPMyAdmin 82
6.3 Creating a Table in PHPMyAdmin | 83
6.4 Creating a Table in PHPMyAdmin Il 83
6.5 Table Structure in PHPMyAdmin 84
6.6 Browsing a Table in PHPMyAdmin 85
6.7 An Updated Table in PHPMyAdmin 86
6.8 The Results of fetch_array() 89
6.9 The Results of fetch_assoc() 90
6.10 The Results of fetch_object() 90
8.1 Simple Form for JavaScript Validation 118
9.1 Opacity of Page Elements 131
10.1 Sample Page to lllustrate the DOM 139
10.2 Example of the DOM 139

10.3 Textual Version of the DOM 140

viii

10.4 Demonstrating before(), prepend(), append() and after() in JQuery 143

10.5 Editing the Box Model with JQuery 144
10.6 Sample age for Demonstrating DOM Navigation 146
10.7 The parent() Function in JQuery 146
10.8 The parents() Function in JQuery 147
10.9 The parentsUntil() Function in JQuery 147
10.10 The children() Function in JQuery | 148
10.11 The children() Function in JQuery Il 149
10.12 The find() Function in JQuery I 149
10.13 The find() Function in JQuery II 150
10.14 Traversing Using Filters 151
10.15 The first() Function in JQuery 151
10.16 The last() Function in JQuery 152
10.17 The eq() Function in JQuery 152
10.18 The filter() Function in JQuery 153
10.19 The not() Function in JQuery 153
11.1 How AJAX Works 157
11.2 The Standard HTML Date Picker, as seen in Chrome 161
11.3 The Standard HTML Date Picker, as seen in Edge 162
11.4 JQuery Ul Date Picker 163
11.5 JQuery Ul Simple Dialog Box 164
11.6 JQuery Ul Draggable and Droppable 164
12.1 Sample Layout of Semantic Elements 170
12.2 The Color Input Type 171
12.3 The Range Input Type 172
12.4 Audio Playback Controls 173
125 Video Playback Controls 173
12.6 Simple Line Drawn onto Canvas 174
12.7 The Japanese Flag drawn onto Canvas 175
12.8 The Thai Flag drawn onto Canvas 176
12.9 AGradient Using the Canvas 176
12.10 Google Map Powered by Geolocation 178
12.11 Local Storage 179
12.12 A Simple Web Worker 181
13.1 Initiating Node.js in the Command Prompt 186
13.2 Hello World by Node.js 186
13.3 Extracting the URL in Node.js 187
13.4 Parsing the URL in Node.js 188
135 A Console Log Event in Node.js 189
13.6 Sample Module from NPM 191
13.7 The num2fraction Module 191
13.8 Demonstrating the num2fraction Module 192
14.1 The empty Calendar Database Schema shown in MySQL Workbench 196
14.2 The appointments Table Structure as seen in MySQL Workbench 197
14.3 Querying the appointments Table in MySQL Workbench 198
14.4 Outputting the Results of a Query 198
14.5 Inspecting the MongoDB Database using Compass | 201
14.6 Inspecting the MongoDB Database using Compass Il 202
15.1 Hello World using Express.js 209
15.2 Returning Parameters as JSON 210

15.3
154
15.5
15.6
15.7
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11

Returning Request Parameters

Returning All Appointments

API Returning Appointments for Specified Month
Result of API to Insert Appointment

Uploading Files with multer

Basic View of AngularJS MVC Architecture

The default Angular App

Hello World in Angular

Simple Child Component in Angular

Simple Child Component displaying a TypeScript Object
Displaying a List Using *ngFor

Two Way Binding in Angular

Event Binding in Angular

England Players in MongoDB

England Team List View

England Player View

212
213
213
215
216
219
221
222
224
225
226
227
228
229
235
236

Part1l
Foundations of Static Web Pages (HTML & CSS)

Chapter 1 Chapter 3
Introducing HTML CSS For Layout
Chapter 2

CSS For Style

Part one deals with the fundamentals of Web development, namely HTML and CSS. HTML (or
Hypertext Markup Language) is one of the key cornerstone languages of the web used to markup
hypertext, instructing the browser how to display the various elements of a webpage. CSS (or Cascading
Style Sheets) is another of the key technology used to style the HTML elements on each page. CSS allows
the separation of content and presentation with CSS providing the instructions for the style of each

element and also the layout of each page.

Chapter 1

Introducing HTML

Objectives

This chapter introduces Hyper Text Markup Language or HTML, the core language used to make basic

web pages. After reading the chapter you should;

e Understand how tags and text are used to create simple webpages
e Know the key tags defined within the HTML language

e Be able to create simple, static webpages that include

0 Text

0 Images

O Tables

0 Links

0 Basicstyling
Contents

1.1 Basic HTML Tags

1.2 HTML Tables

1.3 Images and HTML Attributes
1.4 Hypertext & Links

1.5 HTML Comments

HTML, or Hypertext Markup Language is the standard markup language used to create webpages.
Hypertext is simply text that is not linear — while traditional text, such as in this book, is constrained in a
sequence, hypertext instead can contain links allowing readers to travel through it in a non-linear sequence.
Unlike some of the other languages we will explore in this book, HTML isn’t a programming language, it is
simply a markup language, used to “markup” hypertext. Hypertext can be marked up in many ways, essentially

instructing a web browser how to display the page.

HTML consists of text and tags, with the tags instructing the browser what to do with the text — while
the text will appear on the webpage, the tags won’t. The tags are enclosed between angle (or pointy) brackets,
such as <html>. Often tags come in pairs with an opening and closing tag — the closing tag contains a slash,
such as </html>. Everything in between the opening and closing tag is treated according to which tag has been
used — in this case everything between the opening tag <html> and the closing tag </html> is to be treated as
html —the HTML tag is used to surround the whole webpage. Note that tags are not case sensitive, you could

use <HTML> or <html>, but it is recommended to use lower case.

Let’s dive straight in and create our first webpage! As html is simply text, we can use any text editor
to create a webpage. You can use “Notepad” just make sure you save the file with the extension “.htm” or
“.html”. Alternatively you could use a text editor like Dreamweaver or Sublime Text, these have an advantage
that they use colours to differentiate between different tags and text, which makes it easier for debugging, and
they can also highlight errors. Go ahead, open your text editor and type in the following and save the file as

index.htm.

<html> index.htm
<head>
<title>My First Webpage</title>
</head>
<body>
Hello World!
</body>
</html>

This is the classic first webpage. If you open this file using your browser you should see something

similar to this;

[My First Webpage 9% 0

- = C & [filey//Dy/index.html

Hello World!

Figure 1.1: My First Webpage

The only text that appears on the webpage is “Hello World!”. The rest of the html file is defining how
the browser should present it. It consists of 4 important tags;

<html>...</html> | The HTML tags surround the rest of the page, indicating that
everything insider is html.

<head>...</head> | A webpage is divided into 2 sections, a head and a body. The HEAD
tags can contain a variety of header data — things which generally
don’t appear on the website. We will later see how javascript or
cascading style sheets can be included in the header.
<body>...</body> | The BODY tags contain the part of the webpage that you can see in
the browser window, in this case the text “Hello World!”.
<title>...</title> The title is part of the header and determines what appears in the
browser toolbar. The title is also used when a page is bookmarked
and when a page is displayed in a search engines results.

Table 1.1: Key HTML Tags

The <html>, <head> and <body> tags are important and are the general structure of webpages. You

can see them if you view the source html of any page you visit.

Quick Tip

You can view the source of any webpage in your browser. In Chrome you can access the
source using “Ctrl-U”, or by right clicking somewhere on the page and choosing “View
page source”. If you look at your first webpage you will see the same as you typed in your
text editor. You can see the source of any other page, which is great for learning how
other web developers have done things. This may be complicated for now, but it is a
useful tool and you should see the <html>, <head> and <body> tags on any other page.

1.1 Basic HTML Tags

HTML was originally specified by Tim Berner’s Lee in 1990 while he was working at CERN with the
intention of allowing colleagues to share documents. The earliest version of HTML consisted of just 18 tags,
but as the internet has evolved, the language has been developed through various versions until the latest
version; HTMLS. Some of the original tags have remained the same, while others are no longer supported.
Some HTML tags can be used to define the style in which things appear on a page, and these elements have in
many cases been replaced by cascading style sheets as we will see in chapters two and three. We can use some

basic HTML tags to make our webpage look a little more interesting.

<p>...</p> P is for paragraphs, and is used to define a text into paragraphs. By
default the browser will add some space (or a margin) before and
after each <P> tag.

<h1>..</h1> A variety of headings can be easily added to a page using the tags

<h2>...</h2> from <H1> to <H6>. These tags highlight text into different sizes

<h3>...</h3> depending on which level heading is used.

<h4>..</h4>

<h5>..</h5>

<h6>...</h6>

.. can be used to stress emphasis, or to highlight a piece of text,

<i>..</i> by default making it appear like italics.

... | Strong tags can be used to highlight important text, or make it

.. appear bold.

 is used to create an unordered list of something, and the list

... will consist of list items

...

Table 1.2: Style Related HTML Tags

Most of these tags are used to define the style of how text appears on a webpage, and today style is
controlled by cascading style sheets as we shall see in chapters two and three. Nonetheless these tags can be
used to make a webpage appear more interesting. Note that for most browsers the effect of and <i> is

the same, and similarly the effect of and is equivalent. There is however a subtle difference;
or ‘bold’ defines how the text should appear, whereas simply indicates that the selected text is more
significant that the surrounding text. Similarly while <i> defines that the text should be italic, indicates
that it should be emphasized. For most browsers this difference isn’t noticeable, but if we consider a browser
for a blind person, the visual appearance of the text is not significant, similarly some browsers on mobile

devices may display the text differently. We can use these tags to create a slightly more interesting webpage.

<html> page2.htm
<head>
<title>My Second Webpage</title>
</head>
<body>
<h1>Heading 1</h1>
<h2>Heading 2</h2>
<h3>Heading 3</h3>
<h4>Heading 4</h4>
<h5>Heading 5</h5>
<h6>Heading 6</h6>
<p>This is an interesting paragraph of text with an important word.</p>

Apples
Bananas
Cherry

</body>
</html>

If you look at this page in a browser you should see different sized headings, and a bulleted list of
fruits. Notice how some html tags are nested inside other tags; in other words the tag is nested inside
the <p> tag, which is in turn nested inside the <body> tag, similarly the tags are nested inside the tag.
Always be careful to close your tags correctly — if an element is nested inside another element, make sure to
close the nested element before closing the parent element. Not all elements have a closing tag, for example

the
 tag is used to put in a line break and it needs no closing tag, although it can be closed by using
.

[My Second Webpage x99

= = C & [file///D:/page2.html
Heading 1

Heading 2

Heading 3
Heading 4
Heading 5
Heading 6

Thas 1s an interesting paragraph of text with an important word.

 Apples
* Bananas
¢ Cherry

Figure 1.2: My Second Webpage

1.2 HTML Tables

HTML also includes several tags for creating tables. Tables are similar to spreadsheets and are useful
for displaying data in two dimensions.

<table> table.htm
<tr>
<td>Country</td>
<td>Capital</td>
<td>Population</td>
</tr>
<tr>
<td>Thailand</td>
<td>Bangkok</td>
<td>67 Million</td>
</tr>
</table>

A table consists of the <table> tag. Nested inside the <table> tag are each table row is defined using
the <tr> tag. Nested inside each row the columns are defined using table data, the <td> tag. The preceding
example would show a simple table with 2 rows, one with the column headings, and one with some data about
Thailand. As yet the table wouldn’t look very interesting, as we will need to investigate cascading style sheets
to make the table look better. Further table related tags include <thead>, <tbody> and <tfoot>, which can be
used to indicate where a table has a heading row, a body and a footer. For many years it was common practice
to use tables to lay out a webpage, but a modern approach uses CSS instead. While tables can still be used for

laying out the different parts of a webpage, many of the attributes of tables are now deprecated.

Quick Tip
Don’t use tables for layout!

e Tables often use more bytes of markup, making pages take longer to download.

e The browser needs to download most of a table before it can render any of the page.

e Tables can make website maintenance and particularly redesign much more complicated.
e Tables can make content inaccessible to screen readers.

e Tables can break text copying.

In short, tables weren’t meant for page layouts, but they ARE meant for displaying tabular data!

1.3 Images and HTML Attributes

Webpages look much better with images and adding images to a page is easy, using the tag,
short for ‘image’. The tag is a little different from the tags we have encountered so far. Firstly an
tag is another tag where there is no closing tag, as we want to place an image on a page, but we don’t need to
indicate when we have finished placing the image on the page. Secondly, an tag needs some attributes,
or parameters, most importantly the location of the image you want to place on the page. The first key attribute
is the “src” attribute, short for source which indicates the source of the image file. The following would display
an image called ‘picture.jpg’ in the same directory as the html file.

It is a good idea to organize the various parts of a webpage within your working directory, and that
includes images. Standard, good practice will store images in a separate folder, perhaps named ‘/img’ or

‘/images’. The src attribute can then be a relative link to the file, in this case;

A relative link refers to a URL (Uniform Resource Locator) in relation to the page that is currently being
looked at. In this case the resource being located is the image, which is stored in the img folder. An alternative
to relative links is to use an absolute link. Absolute links provide the full location of the resource, including the
protocol used to get the resource and the server on which it is stored, for example;

8

There are different arguments for using either relative or absolute links, relative links are obviously
shorter, but Search Engine Optimizers (SEOs) may argue to use absolute links rather than relative links to avoid
issues like duplicate content, but while in the future this will be important when working on a live webserver,
for now it is ok to use relative links if you are working on your local machine.

A Relative Link refers to a URL in relation to the page that is
currently being looked at, while an absolute link provides the
full location of the resource including the protocol used to get

the resource and server on which it is stored.

The tag can also take other attributes, with 2 particularly useful attributes, ‘alt’ and ‘style’. The
attributes are set inside the image tag in much the same way as the ‘src’ attribute. The ‘alt’ attribute is used
to supply alternative text for an image — consider if a blind visitor views your page, or perhaps someone’s
connection is particularly slow. The contents of the alt attribute are also displayed when the page visitor hovers
their mouse above the image. In this case the text in the alt attribute can be presented instead, it may also be
useful for SEO. The size of the image can also be specified using the style attribute. We will investigate the style

attribute further in coming chapters when looking at cascading style sheets, but for now;

The ‘alt’ attribute is used to supply alternative text

for an image

1.4 Hypertext & Links

As mentioned at the beginning of this chapter the key to the web is that it is written using hypertext,
and hypertext allows visitors to jump from place to place across the internet. While traditionally text was
organized in a linear fashion, which lead to books being organized and arranged on shelves, such as in a library.
Text here is constrained to only allow one word to follow another, or one sentence to follow another sentence.
Hypertext is different, hypertext allow the reader to take different routes through the information, by following

hyperlinks.

Adding hyperlinks to a webpage is easy, it just involves using another tag, this time the <a> or anchor
tag. The anchor tag has an opening and closing tag, which are around the text, (or image), that you want to
form the link. The anchor tag needs attributes, and for a link the most important parameter is the url that the
link links to. This is stored in the ‘href” attribute.

link here

The href attribute can take an absolute link, or a relative link, just the same as for the source of an
image. With default styling, the words “link here” will appear underlined in blue, and when clicked the browser
will load the page stored at http://www.example.com. Adding links to your page does of course mean that
your visitor may leave your site, so another useful attribute is the target attribute. The target attribute specifies

where the url should open; to get the link to open in a new window specify “_blank” as the target attribute.

link here

Links needed link to the top of a webpage, often it is useful to link to a particular part of a page, or
sometimes link to a different part of the same page. For this we first need to create an identifier for where the
link should direct to. This is done using the “id” attribute which can be added to most of the html tags we have
discussed so far. The “id” attribute is particularly important for many reasons that we will see later in the book,

but for now the we could create a heading which has an “id” attribute.

<h1 id="html-linking”>Links in HTML</h1>

The “id” attribute isn’t displayed in the browser window, but it does uniquely identify this particular
“h1” tag. Ids should only appear once on a page, so that they are uniquely identifiable. A link can then be

created to this particular part of the page using a “#”, as follows;

Go to the HTML Linking Section

1.5 HTML Comments

When writing code in any programming language it is often useful to add comments. Comments can
be used to send messages to other developers who might look at your code, or messages to yourself in case
you forget why you have written it in a certain way. Comments are also very useful for debugging as you can

remove parts of your code while testing it. Comments in HTML are contained within the comments tag.

<I--This is a comment -->

<l-- Don’t show this yet! -->

Key Points

e HTML (Hyper Text Markup Language) is used to create simple webpages.

e An HTML page consists of text and tags, with tags instructing a browser what to do with the text.

e Opening tags, such as <html>, are matched with closing tags, such as </html>.

e Some HTML tags are used to define the structure of the document, such as <head> and <body>.

e Some HTML tags instruct the browser how text should be displayed, such as or <i>.

e The table tags can be used to display tabular data on a page.

e Pictures can be included on a webpage using the tag, which has no closing tag.

e Some tags, such as the tag need attributes, or parameters, to give the browser more
information such as how big the image should be, or where the file is located.

e The anchor tag, <a>, is used for creating links.

10

Further Resources

1) The w3schools website has a lot of excellent resources for web developers. Their default HTML page
can be found here:-

https://www.w3schools.com/html/default.asp
and their HTML reference guide can be found here:-
https://www.w3schools.com/tags/default.asp

2) Codecademy offers a course demonstrating fundamentals of HTML combined with CSS (as we will
explore in chapters 2 and 3). Their course can be found here:-
https://www.codecademy.com/learn/learn-html-css
3) html.com has a reference guide about each of the key tags, and tutorials on several of the topics
discussed in this chapter. Their page can be found here:-
http://html.com/

Assignment

You now have all the skills you need to dive in and create your first webpages! Create a simple website
to introduce yourself to the online world. Your site should have at least 3 pages, linked together, contain
pictures and use a table to show your weekly timetable.

11

Chapter 2

CSS for Style

Objectives

This chapter introduces Cascading Style Sheets (CSS), a language used to define the presentation of an
HTML document. This chapter discusses how CSS is used to control the style of a page or website, while the
following chapter discusses using CSS to control the layout of a page. After reading this chapter, you should;

e Understand the importance of separating the style of a page from its content and how CSS enables
developers to do that.

e Be able to define selectors (HTML, class and id selectors) assigning different properties and values.

e Know how to use span and div tags to implement styles.

e Understand the different places CSS can be added to a webpage.

e Be familiar with some of the key properties that can be controlled by CSS.

Contents

2.1 Why Use CSS?

2.2 Introducing CSS
2.3 Selectors

2.4 & <Div>
2.5 Where to CSS?
2.6 More on Selectors
2.7 CSS Properties

12

CSS, or Cascading Style Sheets, is a language used to define the presentation of a document written in
mark up language, such as HTML. The main purpose of CSS is to separate the content of a document from
aspects of its presentation, such as layout, colors and fonts. Separating the style from the content had
numerous advantages, and is a common design philosophy. One clear advantage to using CSS is reduced
complexity, when all the presentation instructions are stored in a different file. CSS can reduce repetition, and
potential mistakes, as different documents use the same styles, keeping consistency across an entire website,
and making changes to the style of a website much easier — consider if your site has 100 pages, and you needed
to make a simple design change, without CSS you may need to edit all 100 pages, but with CSS the whole site
can be changed by editing a single line. For these reasons, CSS has become a cornerstone language, core to
web development. In this chapter we investigate using CSS to control the style of a webpage, and in the
following chapter we look at using CSS to control the layout of a webpage.

The main purpose of CSS is to separate the content of a document

from aspects of its presentation, such as layout, colors and fonts

A style is a definition of the form something takes — for text this could include the color, the font used,
the size and other stylistic aspects such as italics, bold or underline. For other elements such as an image the
style may include the width, height and position. Styles may also include presentational aspects such as a
border or the surrounding padding. Each style is a combination of these aspects, and each style is given a
unique name — known as a selector. The selectors and their corresponding styles are then defined in one place
—normally in the cascading style sheet. HTML tags then just refer to a particular selector when they need to
activate a particular style.

2.1 Why Use CSS?

There are several good reasons for using CSS, beyond conforming to the design philosophy of
separating for and content. Using CSS allows you to define all the styles in one place — rather than needing to
repeat the styling information many times across many pages. To have a consistent design across a multiple
page website, using only HTML you may need to continually specify the same styling information — also
consider if you need to change that style in the future, with CSS you only need to make one change in one place
to change the look of all the pages. CSS also means you are no longer limited to the standard HTML tags, such
as <P> and <H1>, with CSS you can create your own selectors precisely defining the style with the same
accuracy as in a word processor. With CSS you can completely redefine the effect of the standard HTML tags,
and also redefine features such as links — they no longer need to be underlined and blue, and you can define
different effects if the user hovers their mouse over a link. As we will see in chapter 3, CSS also allows you to
place elements, such as images, onto the page with pixel precision, you can even define multiple layers to allow

13

elements to appear on top of other elements, which can be useful for drop down menus. Using CSS can also
speed up page load times, improving the experience for your site visitors.

Advantages of using CSS

* Separation of form & content

* Define the look of pages in one place

* Easily change the look of pages

* Define more font attributes than the standard tags

* Position elements with pixel precision

* Redefine entire HTML tags

* Define custom styles for links (not just a blue underline)

* Define layers, so elements can appear on top of other elements

2.2 Introducing CSS

Let’s look at a simple example of how you might set up a style. Suppose you want to make a simple
table to display 2-letter country codes for different countries, but were tasked with styling that table as shown
below. Here the first column shows the 2-letter country code, and the second column shows the country.
Notice the two columns have slightly different fill shading, the first column’s text is bold, blue and slightly larger

than the second column which is italic.

uk United Kingdom
us United States
th Thailand

Figure 2.1: A CSS Styled Table

Using the HTML covered in chapter 1, this is a fairly straightforward task, as illustrated in the code on
the following page. A table is created and for each table data tag, <td>, various parameters are set. For the text
in each cell the font tag, , carries further parameters defining the style of the text. It is worth noting that
the tag is deprecated in the latest version of HTML, HTML 5, as the standard and much better way of
coding this example is using css, as will be explored shortly. It is also worth noting that the html font tag is
limited, particularly when it comes to specifying the exact size of text.

14

<table>
<tr>
<td bgcolor="#eeeeee" align="left">
uk
</td>
<td bgcolor="#dddddd" align="center">
<i>United Kingdom</i>
</td>
</tr>
<tr>
<td bgcolor="#eeeeee" align="Ileft">
us
</td>
<td bgcolor="#dddddd" align="center">
<i>United States</i>
</td>
</tr>
<tr>
<td bgcolor="#eeeeee" align="left">
th
</td>
<td bgcolor="#dddddd" align="center">
<i>Thailand</i>
</td>
</tr>

</table>

Notice that the same styling properties are repeated three times through the page. This can be
resolved by setting up the style and calling it when needed. Assuming the styles “coll” and “col2” have been

defined, they could then be applied as below.

<table>
<tr><td class="col1">uk</td>
<td class="col2">United Kingdom</td></tr>
<tr><td class="col1">us</td>
<td class="col2">United States</td></tr>
<tr><td class="col1">th</td>
<td class="col2">Thailand</td></tr>
</table>

There are various places to define styles, as we will shortly see, but the following definitions could be

placed in the head section of the webpage.

15

<style>

.coll{
background-color:#eeeeee;
text-align:left;
font-family:Arial, Helvetica, sans-serif;
font-size:18px;
color:blue;

font-weight:bold;

.col2 {
background-color:#dddddd;
text-align:center;
font-family:Arial, Helvetica, sans-serif;
font-size:12px;
color:black;
font-style:italic;

}

</style>

Selectors are key to styles. Once the selector is defined, they just need to be referenced in order to
activate the style. One place styles can be defined is in the head of a document. In the following example a
headline style is defined for within bold classes. The style can then be activated in the body of the document

by referencing class="headline” as a parameter in the appropriate tag.

<html>
<head>
<style type="text/css">
B.headline {
color:red;
font-size:22px;
font-family:arial;
text-decoration:underline
}
</style>
</head>
<body>
This is normal bold

<b class="headline">This is headline style bold
</body>
</html>

16

This body contains two lines styled with bold text, but the second line is also styled with the headline

style. The webpage would appear as below with the second line, red, larger and underlined.

This 15 normal bold
This is headline style bold

Figure 2.2: A Simple CSS Style Example

2.3 Selectors

There are 3 types of selectors; HTML selectors, class selectors and id selectors. The selectors
demonstrated in the introduction were all class selectors. HTML selectors are used to redefine existing HTML
tags, as using css we can redefine the appearance of tags such as “", “<P>" or “<H1>". Class selectors are
used to define new styles that can be used repeatedly whenever needed across a website. ID selectors are used

for unique elements, when an element only occurs once on the page.
HTML selectors are used to redefine the existing HTML tags. The general syntax for HTML selectors is;
HTMLSelector { Property:Value; }

For example we can redefine the way the bold tag displays by adding the following, it should be clear

what effect the styling will have.

<style type="text/css”>
B{
font-family:arial; font-size:14px; color:red;
}

</style>

Class selectors are used when a style may occur multiple times across a website, and we may need to

call the style more than once. The general syntax for class selectors is;
.ClassSelectorName { Property: Value; }

For class selectors, you can choose what to name the class, but notice the dot before the class name.
Class selectors can then be referenced within other tags in the body of the document. For example;

<html><head>

<style type="text/css">

title {font-family:arial; font-size:14px; color:red}

</style>
</head><body>

<b class="title">This is a bold tag carrying the title class

<i class="title">This is an italics tag carrying the title class</i>
</body></html>

17

In this example the title styling is added to the bold and italic styling as follows.

This is a bold tag carrying the title class This is an italics tag carrying the title class

Figure 2.3: An Example Of A Class Selector

ID selectors are used to define elements on the page that are unique, where the style is only going to
be used once. One place this can be useful is when creating layers, as normally each layer is a unique element.

The general syntax for an ID selector is;
#IDSelectorName { Property: Value; }

Notice the hash before the selector name, this distinguishes the style from class styles. ID selectors
can then also be referenced within other tags in the body of the document, as follows.

<html>
<head>
<style type="text/css">
#layerl {position:absolute; left:100; top:100; z-Index:0; background-color:#FF9}
#layer2 {position:absolute; left:120; top:120; z-Index:1; background-color:#6CC}
</style>
</head>
<body>
<div ID="layer1">
THIS IS LAYER 1
POSITIONED AT 100,100
</div>
<div ID="layer2">
THIS IS LAYER 2
POSITIONED AT 140,140
</div>
</body>
</html>

In this example 2 layers are created and positioned on the webpage. In chapter 3 we will discuss further
how CSS is used to manage the layout of the webpage, but for now notice the page would create 2 layers, with
the 2" layer positioned on top of the first layer, as shown below.

18

THISISLAYER 1
POTHIS IS LAYER 2
POSITIONED AT 140.140

Figure 2.4: An Example Of ID Selectors and Layers

Quick Tip

You don’t need to memorise all the different properties you can use style something, if you use a
free program like “Topstyle Lite”, it will give you a list of possible properties, and their
corresponding values to choose from. The Dreamweaver development environment also offers the

same feature.

2.4 & <Div>

In the example for ID selectors, the styles were referenced with a <div> tag. Div tags are particularly
useful when used in combination with class and id selectors. Along with the tag, div tags are dummy
tags, which don’t really do anything themselves, but can be used to carry css styles. The span tag is an in-line
tag, which means that no line-breaks are inserted before or after it. The div tag is a block tag, which means a
line break is inserted around the div tags to separate it from the surrounding content (like <p> or <table> tags).
The difference between span and div tags, unless other css is referenced, is the line break added by the div tag.
Div therefore is particularly important for layers or other blocks of information. Take a look at the source of

any modern webpage and you will find it broken down into blocks using div tags.

The difference between span and div tags, unless other

css is referenced, is the line break added by the div tag

2.5 Where to CSS?

CSS can be added to a website at 3 levels. Styles can be added inline to a single, individual tag, or it
can be added to the head of a page, as we have been doing so far. The preferred way to add css however is to
separate it into a different file which can then be included on all pages maintaining a single style sheet across

all the pages on the website.

19

Style can be added to any single tag by adding styles to the style parameter within any existing tag.
style = “styleproperty:stylevalue”

For example;
It is <b style="font-size:16px;">NOT me.

In this example, the word “NOT” would be emphasised both with bold, and by changing the size of the
font to 16 pixels. Single tag styling should be avoided wherever possible as using them loses out on many of
the benefits of css. Needing to define styles for each and every tag means needing to define a style again and
again, which is of course error prone and makes maintenance much more difficult, as changing a style means

changing it in many places.

In the examples so far the style was defined in the page header, which makes that style available
throughout the page. In this scenario the style can be defined once in the header and then used as many times
as needed within the page. This allows more freedom with changing the style of a page after it has been made.
As well as this being an advantage to the designer, it is also an advantage to the page visitor as pages will load
more quickly as pages are smaller with styles only being defined once. This advantage is amplified when we

consider using an external style sheet.

CSS can be defined for an entire site by simply placing the style definitions in a plain text file, and
referring to that file in the header of each of the pages. This style sheet is then loaded the first time a visitors
comes to your site and then cached for use when the user visits other pages on your site. This of course speeds
up your sites performance, but also gives lots of flexibility for changing the style of a site after it has been made.
In this scenario the style is completely separated from the content as no styles are defined on the page, they

are simply referenced by a line in each pages header.
<link rel="stylesheet” href="mystyle.css” type="text/css”>

Whenever this line is placed. It tells the browser to load the file called mystyle.css, located in the same
folder as the html file and include its style definitions. CSS stands for cascading style sheets, and the word
cascading is used to suggest which styles have the highest priority. If different styles are set in-line, and in an
external style sheet, the browser needs to know which style to use. The highest priority style is in-line, defined
within an HTML tag — this allows the designer to override any particular style if absolutely necessary. After in-

line styles, the styles defined in style sheets are used, and if no style is applicable, the browser default is used.
2.6 More on selectors

In order to have a consistent website, it is common that multiple styles will share the same properties
and values, for example using the same fonts, colors etc. If so selectors can be grouped, assigning certain
properties to multiple selectors in one go. Consider the following selectors;

.heading { font-family:arial; color:red; background:blue; font-size:14pt; }
.subheading { font-family:arial; color:red; background:blue; font-size:12pt; }
.details { font-family:arial; color:red; background:blue; font-size:10pt; }

20

Here much of the style information for all three selectors is the same. A better way of defining this

would be to group this information, defining their common properties together in one place.

.heading, .subheading, .details { font-family:arial; color:red; background:blue; }
.heading { font-size:14pt; }

.subheading { font-size:12pt; }

.details { font-size:10pt; }

Clearly defining the styles in this way takes less space, is easier to maintain and is less error-prone.

Notice that selectors that should share the same styling are separated by a comma.

A further consideration when defining selectors is to define context sensitive selectors, styles which
should only be invoked in certain situations. For example we may want to define a style for the bold tag which

is only invoked when the style is both bold and italic, but not when it is only bold.

<i>Style invoked here</i>

But not here
This is possible by defining the following selector.
B | {font-size:16px; }
Here bold and italic html selectors are separated by a space, and not a comma. Grouped selectors and
contextual selectors can be defined at the same time.

B I, .heading, B .subheading { font-size:16px; }

In this example the font-size 16px property would be active for text that is bold and italic, or with the
heading class, or bold text with the subheading class. These examples demonstrate the flexibility of css

selectors, a good front end developer will consider different ways to efficiently define their styles.

2.7 CSS Properties

There are many different properties that can be set using CSS. In this section we list some of the
properties and introduce how their values can affect the appearance of various page elements, beginning with

how colors are defined in CSS.
2.7.1 Color & CSS

Colors are a composed of a combination of red, green and blue, with different colors being created by
the amount of these colors added to the combination. Colors can then be specified in 3 different ways;
using a color name, using a HEX value or using an RGB value. Firstly, there are 140 standard color names

supported by all browsers, so colors can set by simply specifying the name of the color.
color: red;

The 140 standard color names range from the common, like green, black and white, to colors such as
“blanchedalmond” and “goldenrod”. It is worth noting that these color names are case insensitive, i.e.

“crimson” is the same as “Crimson”.

21

Clearly if you want to design your webpages precisely, only 140 different colors is limiting, so the
second way of specifying a color is using a HEX value. HEX stands for hexadecimal, or base 16, where the
symbols (letters) A-F are used to represent the numbers from ten to fifteen, and sixteen is represented as 10.
In this way the numbers between 0-255 are written as 00-FF, storing 256 different combinations using 2
characters (or a byte). Two characters are then used to store the amount of red in the specified color, two
more for the amount of green, and finally two for the amount of blue. This gives a total of more than 16 million

different combinations, represented by 6 characters. Some examples of these colors are given as follows;

color: #FFO000 — Red (the maximum value (FF) for red, and none (00) for blue and green).
color: #O0FFQO — Green

color: #0000FF — Blue

color: #FFFFOO — Yellow

color: #000000 — Black

color: #FFFFFF — White

Note that sometimes only 3 characters are used, with only one symbol for the amount of red, green
and blue respectively, here red could be simply specified as #F00, but clearly this reduces the variety of

different color combinations.

The third way of specifying a color is using RGB values. Here the amount of red, green and blue are

specified in decimal. Here values between 0 and 255 are specified separated by commas, for example;

color: rgb(0,0,0);
color: rgh(255,0,0);

There are many different colors to choose from, and many different color combinations, some of which
are more visually appealing than others. There are several “color pickers” on the web that allow you to choose
appealing color combinations and discover the appropriate HEX or RGB values.

2.7.2 Text & CSS

There are many properties that can be used for styling text, including;

Property Values Notes
color Any color name, HEX or RGB | To be W3C compliant, if you set a
value font’s color, you should also define
the background-color property
text-align left, center, right, justify left is the default
text-decoration none, overline, line-through, | Setting text-decoration to none is a
underline useful way of removing the default
underline from links
text-transform uppercase, lowercase, capitalize
text-indent Value in pixels Indents the first line of text
direction rtl rtl stands for right to left
letter-spacing Value in pixels
word-spacing Value in pixels
line-height Value in pixels

Table 2.1 Text Styling Properties

22

Related to the text CSS properties, there are also several properties that can be used related to the
font. The first of these to investigate is the font-family property, which is used to specify which font should be
used to display the text. Generally the font-family property will contain a list of different fonts, beginning with
the preferred font, and ending with a generic font to be used if the desired font isn’t available. Note that if the
font name contains spaces it must be surrounded by quotes. Some fonts may not be available on different
computers, or in certain browsers, indeed maintaining consistency across multiple browsers is a big challenge
that web designers face continually. If necessary, a specific font can be sent to the browser to be used, but

generally a list of options will suffice.
p { font-family: “Times New Roman”, Georgia, Serif; }

The size of the font is set using the font-size property. Just as in any word processor, this can be set to
a specific number of pixels, for example;

H1 { font-size: 40px; }

Setting the font-size by specifying the number of pixels is an absolute setting, which is an appealing
choice as it allows the designer to precisely manage the look of the site — to pixel precision. However, many
web users, for instance visually impaired users, like to control their browsing experience, and most browsers
support the ability to increase or decrease the font size. Setting the font-size in pixels doesn’t scale up for users
who want to zoom the text, or down for viewing on mobile devices. Alternatives to using pixels to specify font
size include percent and Ems, which are relative settings.

An “Em” originally referred to the width of the letter “M”, but in typography refers to the size of a
letter relative to the currently specified size. 1em is equivalent to the current font size, which by default in
browsers is 16px. However, by setting the font-size using em, rather than px, it allows users to adjust the size
they view, as the true size is dependent on zoom settings and the DPI setting for the screen. Assuming the
current font-size is 16px, then setting the font-size to 1em would keep the font-size at 16 pixels, while a setting
of 2.5em would make the font-size 40px (2.5 * 16). Alternatively a setting of 0.5em would result in font-size
8px (0.5*%16).

H1 { font-size:2.5em; /* 2.5*%16 = 40px */ }
.smalltext { font-size:0.5em; /* 0.5%16 = 8px */ }

Note that these examples can cause problems in older versions of internet explorer, and you have no
control over which browser your visitors use. A further alternative is to use percentage, which has a similar

relative text size effect as when using em.

Two further text related properties are font-weight and font-variant. For font-weight, the options are
normal or bold, offering an alternative way of creating bold text. For font-variant the options are normal or

small-caps, where lowercase characters are made uppercase, but in a smaller fontsize.
2.7.3 Backgrounds & CSS

CSS makes it easy to design the background of an element or a page. While this section gives examples

of setting background properties for the whole body of a page, the same principle can be applied to any

23

element on the page. At its simplest, the background color of an element can be set, by using the background-
color property and using one of the coloring methods discussed previously.

body { background-color: #ff0000; }

Alternatively, an image can be used as the background of an element, and for this the url of the image
must be specified, in a similar way to when placing an image on the page. In this case the background-image

property is set.
body { background-image: url(“background.jpg”); }

Care should be taken when selecting background images, as often text will be placed on top of the
background. Choosing the wrong background can make text unreadable, bearing in mind you may not know
the width and height of your visitor’s browser window. By default the background image specified will ‘repeat’
itself, both horizontally and vertically, which naturally may not be the intention. This can be controlled by the

background-repeat property, which can be set to “repeat-x”, “repeat-y” or “no-repeat” to specify a horizontal,

vertical, or no repeat respectively.

While we will discuss positioning elements further in the next chapter, it may be that the background
image needs to be positioned, not in the top left corner of the element — particularly if the image is not to be
repeated. The background image can be placed using the background-position property, which can take
combinations of the following values; “top”, “center”, “bottom”, “left” and “right”. By default the background
image will scroll with the element, which can be stopped by setting the background-attachment property to

be fixed. All of these background settings could lead to CSS as follows;

body {
background-color: #ffffff;
background-image: url(“background.jpg”);
background-repeat: no-repeat;
background-position: top center;
background-attachment: fixed;

}

As this is somewhat longwinded, it is possible to set all these properties in a single statement, using
the shorthand method;

body { #ffffff url(“background.jpg”) no-repeat fixed top center; }

This works so long as the properties are specified in the correct order; background-color, background-
image, background-repeat, background-attachment, background-position. However, it doesn’t matter if some

properties are missing.
2.7.4 Links & CSS

The traditional HTML link appears in blue, underlined, but unless the website is designed for the 1990s,
links can be designed so much more attractively. Crucially a link needs to stand out from the rest of the page,
so that users know they should click on it, but there are different ways that designers can make links stand out.

24

Obviously when styling a link, CSS is added to the anchor tag, or “A” tag. A common example is to remove the
underlining, which is done by setting the text-decoration parameter for the anchor tag;

a:link {text-decoration: none; }

Notice the syntax here for “a:link”, the colon is used to define a style for a particular pseudo-class. A
pseudo-class is used to define a particular state for an element, in this case the style is used when the link is in
its link state. A link can however be in other states and initiate an alternative pseudo-class; namely a link which
has already been visited, a link which is being hovered over by the mouse, and a link which has been clicked —
pseudo-classes can be used to define different styles for each of these scenarios.

a:link { color: #000000; }
a.visited { color: #404040; }
a:hover { color: #8c8c8c; }
a:active { color: #bfbfbf; }

Using this CSS will make the links a different shade of gray (to black) depending on their state. Note
that when the mouse hovers over a link this will change its state, and so change its color, similarly with the
active state when the mouse clicks on the link. Using CSS to change properties like this can begin to activate a
website, and in the next chapter we will see an example of a CSS controlled drop down menu when a mouse

hovers over a menu item.
2.7.5 Lists & CSS

Chapter 1 briefly introduced lists in HTML. HTML supports two different kinds of lists, ordered and
unordered. An unordered list, as seen in chapter 1, would appear with bullet points, and is indicated by the
 tag. An ordered list could appear as a numbered list, and is indicated by the tag. In each case each
list item is indicated using the tag. CSS allows the designer to style these lists in more interesting ways,
mostly using the list-style-type property. For unordered lists, the default marker is a disc, but the alternatives

are a circle, or a square;
ul { list-style-type: square; }
Alternatively a custom image could be used by specifying the list-style-image property;
ul { list-style-image: url(“my_marker.gif”); }

For ordered lists there are a variety of options depending on whether the list should be ordered by
numbers or letters. Simple parameters for the property include Armenian, Georgian and Katakana numbering
systems, but more useful values include “lower-alpha”, “upper-alpha”, for lower and upper case alphabet. The
“decimal” value is used for standard numbering, while roman numerals can be easily used using “lower-roman”

or “upper-roman”.

ol { list-style-type: lower-alpha; }

25

Key Points

CSS is used to control the style of a website; all aspects of the presentation including layout, colors and
fonts.

Existing HTML selectors can be redefined to make them appear differently, while new styles can be
created using either class or ID selectors.

ID selectors should be used when there is an element that will only occur once, while class selectors
are used for styles that occur multiple times.

Class selectors are defined using a dot “.”, while ID selectors are defined using a hash “#”.

 and <Div> are dummy tags that can be used to invoke style, while not really doing anything
themselves — the difference is that the <Div> tag will insert a line break around it.

CSS can be defined either within a single tag, within the head of a page, or in a separate stylesheet.

Further Resources

1) The w3schools website has a tutorial introducing the basics of using cascading stylesheets — their site
can be found here:-
https://www.w3schools.com/css/
2) Html.com has a guide for using css alongside html. Their guide can be found here:-
http://html.com/css/
3) Csstricks.com has a wide variety of ideas for how CSS can be used to improve the design of websites.
Their site can be found here:-
https://css-tricks.com/
Assignment

You should now be able to get going with CSS! Dive in! Take the simple web page created at the end

of chapter 1 and ‘pimp it up’. Use all the CSS techniques described in this chapter to design a page that looks

modern and stylish.

26

Chapter 3

CSS for Layout

Objectives

This chapter continues the exploration of Cascading Style Sheets, this time investigating how it can be
used to manage the layout of a page. The layout of a page is important to make sure each element on the page
appears where it is meant to be, particularly in today’s world where website visitors are using different
browsers on a variety of devices with different screen sizes. Making pages responsive to being opened on

different screens is an important goal for a web designer. After reading this chapter you should:

e Understand the different settings that can be applied to the position property, notably the fixed,
relative and absolute properties, and how they can be combined to position elements inside other
elements.

e Understand how elements can be floated next to each other to create multiple columns, managing
situations where different columns have different heights.

e Be comfortable with the box model, knowing how each element is surrounded by padding, borders

and margins and being able to control an elements position by adjusting these values.

Contents

3.1 The Position Property

3.2 Float and Clear

3.3 Borders, Margins and Padding
3.4 A Simple CSS Image Gallery
3.5 A Simple CSS Hoverbox

27

Chapter two introduced how CSS is used to manage the style of a webpage, this chapter explores how
CSS manages the layout of a webpage. Generally a webpage will consist of many elements, or blocks. Some
elements will contain content like text, others may contain images, and others may contain navigation tools,
while some may contain adverts. An important task for a web designer is to make sure all the elements appear
where they are meant to appear, in all browsers, with potentially different devices and screen sizes. Fortunately

CSS provides all the necessary tools for managing a webpage’s layout.

The previous chapter introduced the and <div> tags, the <div> tag in particular is very useful
for arranging a page into blocks and ensuring they appear where they are intended to. The previous chapter

also gave a very brief example that introduced positioning layers on a webpage. Let’s revisit that example;

<html>
<head>
<style type="text/css">
#layerl {position:absolute; left:100; top:100; z-Index:0; background-color:#FF9}
#layer2 {position:absolute; left:120; top:120; z-Index:1; background-color:#6CC}
</style>
</head>
<body>
<div ID="layer1">
THIS IS LAYER 1
POSITIONED AT 100,100
</div>
<div ID="layer2">
THIS IS LAYER 2
POSITIONED AT 140,140
</div>
</body>
</html>

In this example, two ID selectors are created and for each ID, 5 CSS properties are set. HTML then
creates two layers, one for each of the ID selectors. From chapter two the background-color property should
be easily understood. The other 4 properties are the interesting part when using CSS for layout. The left & top
properties should be straightforward, they set how many pixels from the left and top of the screen that each
block should appear. The z-index property sets which element should appear on top of another element, with
elements that have a higher z-index property appearing on top. Finally the position property is perhaps the
most interesting, in this case the position is set to absolute, which means that the elements are removed from
the page, and positioned absolutely as specified. The result is two coloured blocks that are positioned away

from the top left corner, with one block appearing over the other block.

28

THISISLAYER 1
POTHIS IS LAYER 2
POSITIONED AT 140,140

Figure 3.1: Basic CSS Positioning

3.1 The Position Property

The position property can be set for any selector, and has 4 important possible values; static, absolute,
relative and fixed. Firstly, the static value is the default value, i.e. the way all our examples have worked so far.
The static value means that the element is not affected by properties such as top, bottom, left or right, indeed
the element is not positioned in any special way, it is just positioned in the normal flow of the page, following
the elements positioned before it. The CSS is straightforward, the following would make any div with the class
static to be positioned statically. Note that this would not be necessary as divs are positioned statically be
default.

div.static { position:static; }

The second positioning value is the relative value. The relative value allows the element to be moved
away from its regular position by setting top, bottom, left or right properties. The element is then positioned
relative to its normal position. The content around it will not be adjusted though, so the relative value could
leave gaps on the page, or move elements to appear over other elements. In the following example a div with
the relative class would be moved 20 pixels down from the top and 20 pixels away from the left.

div.relative { position:relative; left: 20px; top: 20px; }

We can see these effects in a fuller example;

<html>
<head><style type="text/css">

div.static { position:static; }

div.relative { position:relative; left: 20px; top: 20px; }
</style></head>
<body>
<div class="static">This div is statically positioned!</div>
<div class="relative">This div is relatively positioned!</div>
</body>
</html>

29

This HTML will produce a page that looks as follows;

This div 1s statically positioned!

Thas div 15 relatively positioned!

Figure 3.2: Static And Relative Positioning |

As can be seen, the second div has been moved 20 pixels to the right and 20 pixels down from where
it would normally follow the first div. Notice what happens if we switch the two divs around, and place the
relatively positioned div on the page before the statically positioned one. In this case the relatively positioned
div is moved on top of the statically positioned one. This is because it has been removed from the regular flow
of the page. Notice the white space that has been left in the top left.

ThiFkl disteehliglssgoaindhed!

Figure 3.3: Static And Relative Positioning Il

The fixed position property places an element in a fixed position within the viewable area. In this case
the element will remain fixed even when the page scrolls. The position is set using the top, left, right or bottom
properties, so for example if an element was needed to be fixed in the top right corner of the page, it could
use the following class. Note that the width property has also be set to limit the size of the element.

div.fixed {
position: fixed;
top: Opx;
right: Opx;
width: 200px;
}

The 4% important position value is absolute, as seen in the opening example. Like a fixed element,
absolutely positioned elements can be precisely placed on the document, however, unlike fixed elements, the
absolutely positioned element will scroll with the page. An absolute element is positioned relative to its nearest
ancestor, which means that when an absolutely positioned element is placed inside another element the
element is positioned in relation to the containing element. In the opening example, neither layer 1 or layer 2

were inside another positioned element, so they were placed in relation to the document’s body. Some useful

30

positioning effects can be gained from absolutely positioning elements inside other elements, such as inside a
relatively positioned element, as can be seen in the next example.

<html>
<head>
<style type="text/css">
div.relative { position:relative; width:400px; height:200px; border: 1px solid black; }
div.absolute { position:absolute; width:200px; height:100px; top:80px; right:20px; border: 2px solid black; }
</style>
</head>
<body>
<div class="relative">
This div is relatively positioned!
<div class="absolute">
This div is absolutely positioned!
</div>
</div>
</body>
</html>

Here there are 2 divs, one relatively positioned and one absolutely. The relatively positioned div is give
a size of 400 pixels by 200 pixels, while the absolutely positioned div is smaller at 200 pixels by 100 pixels. The
relatively positioned div has a thin black border, while the absolutely positioned one is thicker. Notice that the
absolute div is nested inside the relative div, which means that it is to be positioned in relation to it — in this
case the relative div is the parent of the absolute div. We will explore the idea of parent and child elements
later when we introduce the Document Object Model, or DOM. For now, the absolute div will be placed 80

pixels from the top and 20 pixels from the right, inside the relative div, as follows.

This div is relatively positioned!

This div 1s absolutely
positioned!

Figure 3.4: Relative And Absolute Positioning

31

Using this technique a webpage can be broken down into blocks, and sub-blocks, with the elements
of each sub-block being positioned within the block. Different blocks may contain images, text content,
navigation etc. CSS can also be used to create tables, or column layouts by simply placing multiple absolutely
positioned divs inside a relatively positioned div. These four positioning values are important for managing the

layout of a page using CSS.

Property | Effects

static Default setting, element will follow previous element

relative Element is moved relative to itself, i.e. moved from where it would
statically appear, based on the top, left, right and bottom settings
absolute | Element is moved to an absolute position within its parent element
fixed Element is fixed in position in the viewport, and will not move as the page
scrolls

Table 3.1: The Four Positioning Properties And Their Effects

3.2 Float & Clear

Using relatively and absolutely positioned elements it is straightforward to create multiple columns.
Consider this 2 column example using dummy text. The first column is defined with the class coll, positioned
absolutely on the left, while the second column is defined with class col2, positioned absolutely on the right.

As both columns are placed within a relative block, they appear next to each other.

<html>
<head>
<style type="text/css">
.relative { position:relative; width:500px;}
.coll { position:absolute; top:0; left:0; width:250px;}
.col2 { position:absolute; top:0; right:0; width:250px;}
</style>
</head>
<body>
<div class="relative">
<div class="col1">
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
</div>
<div class="col2">
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.
</div>
</div>
This content will cause a problem.
</body>
</html>

32

A big problem with this example occurs if we try to add any further content after the relative div,
before the closing body tag. Even though the relative div contains two further divs, because they are absolute
divs, they have been removed from the general flow of the document to be positioned absolutely. This means
the relative div has no height, and so any content following this div will appear in the same place as can be
seen below. One simple solution could be to simply add a height parameter to the relative div, however often
the amount of content to be included in columns is unpredictable, and can be affected by things such as the
font size. In this example, each column contains a different amount of content, and sometimes the content

may be images rather than text.

Thremonrentmidl onasemmysoblem .
consectetur adipiscing elit. sed do
etusmod tempor mcididunt ut labore

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. sed do
etsmod tempor mcididunt ut labore et

dolore magna aliqua. Ut enum ad
minim veniam, quis nostrud
exercitation ullameo laboris nisi ut
aliquip ex ea commodo consequat.

Figure 3.5: Problem With Relative Positioning

If the columns may have varying heights, then absolute positioning won’t work. In this scenario, an
alternative solution is to float elements, so that they are pushed as far to the left, or right as they can. The
typical use for this is to wrap text around an image, but it can also be used for more complex layout tasks. The

float property can be set to float elements to the left or right.

<html><head>
<style type="text/css">
.relative { position:relative; width:500px;}
float { float:right;}
</style>
</head>
<body>
<div class="relative">
<div class="float">

</div>
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.
</div>

</body></html|>

33

In this example, text is wrapped neatly around a simple grey image which has been floated to the right.
Because the text is now part of the relative div, any content that follows it will appear as expected.

Lorem ipswm dolor sit amet,

consectetur adipiscing elit. sed do

ensmod tempor mcididunt ut labore

et dolore magna aliqua. Ut enim ad

MmN Veniam, quis nostrud

exercitation ullamco laboris nist ut

aliquip ex ea commodo consequat.

Duis aute wrure dolor in reprehenderit

in voluptate velit esse cillum dolore

eu fugiat nulla pariatur. Excepteur sint occascat cupidatat non proident. sunt
i culpa qui officia deserunt mollit anim 1d est laborum.

Figure 3.6: An Example of Float

Rather than wrapping text around an image, the float property can be used to float multiple columns
next to each other, with varying column heights. When an element, such as the grey picture above, is set to
float, then subsequent content will flow around it. This would mean that all content that follows a floated

section with flow around it. To end the floating section, the clear property can be applied.

<html><head>
<style type="text/css">
.relative { position:relative; width:500px;}
.col { float:left; width:250px;}
.clear { clear:both; }
</style>
</head>
<body>
<div class="relative">
<div class="col">
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
</div>
<div class="col">
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.
</div>
</div>
<div class="clear"></div>
Content continues here as expected.
</body></html>

34

The clear property can have several values; left, right or both. Left and right can be used to only clear
certain floats, while both will clear all floats. In the example given, the clear selector has been created to clear
both sides, and is then carried in an empty div following the columns. The result successfully creates two
columns of different heights, and potentially different widths, with the following content appearing afterwards

as intended.
Lorem ipsum dolor sit amet, Lorem ipsum dolor sit amet,
consectetur adipiscing elit. sed do consectetur adipiscing elit. sed do

etusmod tempor mcididunt ut labore etusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enum ad
minim vemam, quis nostrud
exercitation ullameo laboris nisi ut
aliquip ex ea commodo consequat.
Content continues here as expected.

Figure 3.7: The Clear Property

3.3 Borders, Margins & Padding
In a previous section we demonstrated how to set a simple border around an element;
.simpleborder { border: 1px solid black; }

This example demonstrates the shorthand for setting border properties. In this one line 3 border
related properties are set; the width, the style and the color.

[Solid Border |
:Dmedamder
Dashed Border _ _ _ _ _ _ _ _ ___—~~ "~ "1

[Double Border |

Groove Border
Fadge Border
Inset Border

COtset Border

Figure 3.8: Different Border Styles

35

The width property should be self-explanatory, simply specified in pixels, similarly the color property
is set using standard CSS colors. There are several options though for the border-style property. The possible
values are; solid, dotted, dashed, double, groove, ridge, inset and outset, which provide the following effects.
The border-style property must be set, i.e. a solid border is not a default, without a border-style, the other
border properties will not take effect. The width can be set precisely using pixels, or as thin, medium or thick.
The default border-width, as used in the previous graphic, is medium. While a medium border appears to be 4
pixels, this may depend on the browser specification, so for precision it is worth using a precise pixel value. It
is also possible to mix the border and set different borders for each of the 4 sides of the element. The following

are just examples of all the border related properties; border-bottom-color, border-left-style, border-top-size.

Any of the elements of a webpage could have a border around it, and largely the border is a stylistic
aspect, so perhaps a topic for the previous chapter where CSS is used for style. However, borders also add size
to an element, which can have a big impact on the layout of the page. In a previous example there were two
elements with width 250 pixels that fitted neatly into an element of width 500 pixels. If these elements were
to have borders, then they would not fit as the border adds pixels to the width. Outside of the border, each
element also has a margin, which can add width (and height) to each element, while inside the border there is
a padding, which can be used to space elements attractively.

MARGIN
BORDER
PADDING

CONTENT

Figure 3.9: The Box Model

Often referred to as the Box Model, each element can be considered as a box, which is surrounded by
padding, and then a border, and then a margin. The margins can be set using the margin-top, margin-right,
margin-bottom, margin-left properties. Similarly the padding can be set using the padding-top, padding-right,
padding bottom and padding-left properties. In both cases it is common practice to use the shorthand version

and set all 4 properties in one line, the following 2 examples are equivalent;
.margins { margin-top: 5px;
margin-right: 4px;
margin-bottom: 3px;

margin-left: 2px; }

36

.margins { margin: 5px 4px 3px 2px; }

If the margin (or padding) property has 4 values, such as this, then they are applied to the top, right,
bottom and left edges in that order. If the margin (or padding) property has 3 values, then the first is applied
to the top, the second is applied to the left and the right edge, while the third is applied to the bottom. If the
margin (or padding) property has 2 values, then the first value is applied to the top and bottom and the second
applied to the left and right, while if there is only one value, it is applied to all 4 sides, for example;

.margins { margin: 1px; }

On further value that the margin property can take is the “auto” value. This can be very useful for
centering elements inside a larger element. In the following example, the left and right margins of the element
are set to auto. Here, assuming the width of the element has been set, then the remaining space either side is
automatically split between the left and right margins, hence centering the element. This is particularly useful
when centering the whole page block within the body tags — while we don’t know the size of the user’s screen,
we can use the auto value to position the page in the center of the viewing area, rather than in the top left
corner, no matter how big the screen is. This works nicely, assuming the browser window is wider than the
element’s width, otherwise the browser may add a horizontal scrollbar. An improvement can be to change the

width property to use the max-width property, particularly when designing for mobile environments.
.margin { width: 600px; margin 0 auto; }

An issue here which has caused a mathematical headache for web designers is that the true width of
an element is the width + padding-left + padding-right + border-left + border-right + margin-left + margin-right.
Similarly the true height of the element needs to add the top and bottom padding, border and margin to the
height of the element.

Quick Tip

If you are struggling to position an element precisely, try opening your page in the chrome
browser. Right click on the element you are trying to position and select “Inspect”. The developer
tools window will appear, and you can see your HTML and also the CSS that is being applied to the
element. Here you can temporarily edit the CSS to find the values you really need.

There are alternative methods emerging, but as with many web development techniques, they may
not work with all browsers, particularly older versions of a browser. So, another way of dealing with this issue
is to set the width of an element using percentages, rather than pixels. If you want 2 columns to appear in a
block, you can simply set the width of each column to be 50%, rather than calculating the number of pixels.
Similarly if you want 3 columns, you could set the width of each to be 33%. Setting widths as percentages,
otherwise known as using relative units, makes your pages more responsive, and better able to cope with

different screen sizes and resolutions.

37

.splitDisplay{float:none;clear:left;}
.split50{width:47%;float:left;}
.split33{width:31%;margin-right:1%;float:left;}
.split66{width:64%;margin-right:5px;float:left;}

3.4 A Simple CSS Image Gallery

Later chapters will introduce javascript, which will enable you to create more sophisticated image

galleries, but a simple image gallery can be created in simple CSS.

<html>
<head>
<style type="text/css">
#tcontent {max-width:800px; margin: 0 auto;}
.image {float:left; margin:4px; border: 3px solid #ddd; padding:3px; }
img { width:180px;}
.image:hover {border: 3px solid #333;}
.description {padding:5px; text-align:center;}
</style>
</head>
<body>
<div id="content">
<div class="image">

<div class="description">Black Image</div>
</div>
<div class="image">

<div class="description">White Image</div>
</div>
<div class="image">

<div class="description">Dark Image</div>
</div>
<div class="image">

<div class="description">Light Image</div>
</div>
</div>
</body>

</html>

38

In this simple example, four images are floated next to each other, while the images could be anything,
these images are simple colour spaces. The images appear inside a content block which has its width specified,
but the content will appear in the middle. CSS is used to set the margins, borders and padding for each image,
and these can be easily adjusted to the image gallery needs. Each image is contained within a link to the full
version of the image, and each image is accompanied by a description which appears centered below the
image. The image gallery is activated by using the hover pseudo-class. When the mouse is hovered over any of
the images it is highlighted by making the border color is made darker.

Black Image White Image Dark Image Light Image

Figure 3.10: A Simple CSS Image Gallery

3.5 A Simple CSS Hover Box

In future chapters we will investigate how CSS can work with javascript to activate webpages improving

features like image galleries. In this section a simple information box is displayed when the user hovers their
mouse over a button.

<html>
<head>
<style type="text/css">
#tcontent {max-width:800px; margin: 0 auto;}
.button { border:2px solid black; width:200px; text-align:center; padding:3px; }
.hoverbox {
display:none;
border: 1px solid #666;
position:absolute;
top:40;
padding:3px;
background-color: #ddd;
}
.button:hover .hoverbox { display:block; }
</style>
</head>

39

<body>

<div id="content">

<div class="button">
Hover Here
<div class="hoverbox">More information can be found here</div>
</div>
</div>

</body>
</html>

In this example a simple button is created and styled. Then a hoverbox style is created with the display
property set to “none”. As expected this instructs the browser not to display the hover box. However, in the

button’s hover pseudo-class the display is set to “block”, making it appear when the button is hovered over.

Hover Here h‘.:.

A

More mformation can be found here

Figure 3.11: A Simple CSS Hover Box

Key Points

e (CSSis also used to precisely position any element on a page so that it appears exactly where it is

intended to appear on any device, responsively using any screen size.

The position property can be set to be static, relative, absolute or fixed.

e Relative positioning moves an element relative to its original location in the document.

Absolute positioning removes an element from the page and positions it precisely within its parent

element.

Fixed positioning allows an element to remain where it is even if the page is scrolled.

Elements can be floated next to each other to create column layouts.

The box model demonstrates how each element is surrounded by padding, a border and a margin —

adjusting these properties will change how elements are laid out.
Further Resources

1) The w3schools website has a tutorial discussing CSS for layouts, which can be found here:-
https://www.w3schools.com/html/html_layout.asp
2) Learnlayout has an easy to read guide to the fundamentals of CSS for layout, which can be found here:-
http://learnlayout.com/
3) The Mozilla Developer Network has a detailed reference guide, complete with examples that can be
found here:-
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout

40

4) Bootstrapis an open source toolkit / framework for building responsive pages with HTML and CSS (and
JavaScript). Once you are comfortable with the basics of creating CSS layouts, it is worth spending
some time to use bootstrap help with your page layout. You can download Bootstrap from here:-

http://getbootstrap.com/
And, w3schools has a guide to using Bootstrap here:-
https://www.w3schools.com/bootstrap/default.asp

Assignment

The best way to learn how to layout a page is to jump in and try to recreate an existing page, with pixel
precision! Consider the following 9 layouts — try to recreate them exactly, making sure they open correctly on

different size screens.

E'E
e
Il Yl

41

42

Part 2

Server-Side Scripting with PHP

Chapter 4 Chapter 6

Introducing PHP PHP Files & MySQL Databases
Chapter 5 Chapter 7

PHP Functions and Objects Cookies, Sessions & Security

Part two focuses on the PHP programming language (or Hypertext Pre-Processor), a popular
programming language used by as much as 80% of websites. The language is a core component of the
WAMP (or LAMP / MAMP) stack, along with an operating system, Apache and MySQL. This part will
explore how PHP is used on a server to generate pages that are then passed to the client machine to be
displayed in a browser. Being run on the server means the code works closely with the server’s
filesystem and a database, such as MySQL. This part also deals with some security threats as well as

managing cookies and sessions.

43

Chapter 4

Introducing PHP

Objectives

This chapter introduces the PHP programming language, an important server side language. Because

PHP code is executed on a server, away from the browser, either a server is needed or a webserver can be set

up on any machine. This chapter covers the basics of PHP, introducing how code can be run on a server to

generate a HTML file to send to the client machine. After reading it you should;

Be able to set up a webserver.

Understand the basic structure of PHP code, noting the similarities and differences between PHP and
other languages.

Know how to use Variables in PHP.

Be able to use operators in PHP.

Understand the basic flow control statements used in PHP.

Be able to create a simple form to pass data from one page to another.

Contents

4.1 Setting Up a Web Server

4.2 PHP Basic Syntax

4.3 PHP Variables

4.4 PHP Operators

4.5 PHP Flow Control

4.6 PHP Form Validation Example

44

PHP is a language where code is executed on the webserver, often before the page is sent to the user.
It is an important language, currently used as the server side language for more than 80% of websites. Later in
the book we will consider alternatives, but for now PHP is a core part of the WAMP development stack. It is
important for web developers to understand the differences between running code on a server and running it
on the user’s machine. While a web developer can’t decide which browser, and which browser version, the
user is going to use, the developer has much more control over the web server. Running code on the server
also gives easy access to databases stored on the server. Understanding when and where to run code is an
important part of becoming a web developer.

PHP is an acronym for “Hypertext Pre-Processor”, used to generate html
code to be sent to the user’s computer. PHP is a free, open source, server
side scripting language, which is both powerful, and easy to learn.

PHP originally stood for Personal Home Page, but now it is an acronym for “Hypertext Pre-Processor”,
as it is used to generate html code to send to the user’s computer. PHP is a free, open source, server side
scripting language, which is both powerful, and easy to learn. PHP files have the extension .php and can contain
both HTML and PHP code. When the webserver receives a request for a php file the request is sent to the php
engine before HTML is returned to the machine where the request came from.

/; Rem
w]-//

Figure 4.1: A PHP Request

4.1 Setting Up A Webserver

If you have access to a webserver online, it is likely to already have software running on it, and that is
likely to include php amongst others. If you don’t have a webserver already then it is still possible to set up
your personal machine to create a development environment. To set up your machine, you will need to install
a software stack, depending on your machine. In this book the WAMP software stack is used, and a version of
it can be freely downloaded from wampserver.com. There are various alternatives such as LAMP, or MAMP,
depending on your machine. WAMP stands for Windows, Apache, MySQL, PHP. These 4 software components
are the 4 layers of the webserver that we will use.

45

The “W” clearly refers to the operating system, which in this environment is Windows. With a layered
model, any of the layers can be replaced without affecting those around it, so Linux users can easily use LAMP
instead. The “A” stands for Apache HTTP Server, the most widely used webserver software, which is free and
open source, this is the core software which deals with HTTP requests. The “M” stands for MySQL, which is the
database software that we will investigate in more detail in coming chapters, and the “P” stands for PHP. The
WAMP software stack can be installed on any windows machine, to make it work like a webserver — from now
on, rather than opening html files directly from the browser, they can be opened through Apache, using the

localhost.

After installing webserver software, there will be a “www” directory, in which files can be saved, and
then opened via localhost. To test the software is working, save a file called “hello.php” with the following

contents in the “www” folder.

<?php echo “Hello World”; ?>

Next open this file in your browser at the url:- localhost/hello.php, or 127.0.0.1/hello.php. localhost is
a hostname that refers to this computer, and generally resolves to the ip address 127.0.0.1. Assuming your
webserver is running, you should see the following in your browser window, and now have a web development
environment set up on your local machine. Remember, even though PHP code is running on your local machine,

it is acting as a webserver that could be running anywhere in the world.

o -Em
/ [127.0.0.1/hello.php x Y}

€ C A [112700.1/hellophp Q7 =

Hello World

Figure 4.2: Hello World in PHP

4.2 PHP Basic Syntax

As shown in the opening “Hello World” example, PHP code is written inside the opening and closing
PHP tags;

<?php // Code Here >

46

This could be substituted for simply an opening question mark tag, as follows, but it is suggested to

keep using opening php tags;
<? // Code Here >

A block of PHP code can appear anywhere within the document, and it is interpreted by the server
before the final HTML is returned to the browser. This can be seen if you inspect the source of the “Hello
World” example. This also means that unlike HTML & JavaScript, the user can’t see what PHP code may have
been executed to create the page. A PHP code block can contain HTML code, PHP code, or text. The “Hello
World” example uses the PHP language construct ‘echo’ to display the words onto the document.

As with any programming language, comments are very useful to help programmers remember their
reasoning, and also for any other developers who may need to maintain code in the future. Comments in PHP
are left in the same style as in JavaScript or C++, using either ‘//" or ‘/* ... */’, depending on whether the

comment fits on a single line or spans multiple lines.
4.3 PHP Variables

Variables are containers that can be used in code to store some value. In PHP a variable name is
preceded by the “$” symbol, and the name, as with other programming languages, can be any combination of
letters, numbers and the underscore character, so long as it doesn’t begin with a number. Variable names are
case sensitive, so SName, Sname and SNAME would all refer to different variables. PHP variables can contain
a variety of different data types including; Strings, Integers, Float, Boolean, Array and Objects. In PHP variables
are weakly typed, which means the type of the variable doesn’t need to be specified, PHP will automatically
convert a variable depending on the value being stored there. In addition, the variable doesn’t need to be

declared in advance, in PHP you can just start using variables.

<?php
$x=5;
Sy="3.5";
$z=5x+3y;
echo "The number is Sz
";
echo "The numberis " . $z. "
";
>

This example demonstrates 3 variables, the first ($x) stores an integer, while the second (Sy) stores a
string. When the two are added together and stored in Sz, PHP has no problem with converting the data types,
firstly from a string to a floating point number, and then adding a float to the integer. The resulting number is
then displayed on the screen twice. The two echo statements produce the same result, as a variable can be

“n

included within an output string, or concatenated together using “.”.

As with other programming languages, a string is a sequence of characters, alphanumeric or symbols,
which is contained inside quotes, either single quotes, or double quotes. Because strings are so important in
web programming, PHP has plenty of string related functions, which will be discussed later. An integer is an
whole number between -2,147,483,648 and 2,147,483,647; it can be positive or negative so long as it has no

47

decimal point. A variable containing a number with a decimal point is a float, otherwise known as double. A

Boolean variable can take two values, either true or false.

Arrays are a special type of variable which can store multiple values. When data values are related it
makes sense to store it in an array, rather than as separate variables. In PHP an array is created using the array()
function. In this example an array of 3 student names is created and then the first student’s name is output.
By default PHP arrays are indexed beginning at 0. A further student name is then added to the array, which
will have the index 3.

<?php
Sstudents = array(“John”, “Bob”, “Steve”);
Sstudents[] = “Fred”;
echo “The first student is “ . Sstudents[0];
>

As well as indexed arrays, arrays can be associative, where the index isn’t an integer. As with
associative arrays in JavaScript, these arrays can have a string as the index.

<?php
Sages = array(“John”=>"18", “Bob”=>"19", “Steve”=>"22");
echo “John is “ . Sages[“John”];

?>

Whether the array is indexed or associative, each element in the array is a key=>value pair. With an
indexed array the key is an integer, while with an associative array the key is a string. The value can be of any
type, including an array, which allows the creation of multi-dimensional arrays, or arrays of arrays. This example

creates a 2 dimensional array to store students names, scores and grades.

<?php
Sstudents = array();
Sstudents[] = array("John", "84", "A");
Sstudents[] = array("Bob", "65", "C+");
Sstudents[] = array("Steve", "72", "B");
echo "The first student's grade is " . Sstudents[0][2];

?>

The string type of variable is particularly useful in web development, as many pages consist of strings.
It is unsurprising that PHP includes a wide variety of functions to manipulate strings in different ways. The

following table introduces just some of the string related functions included in PHP.

Function Name Purpose

explode() Splits a string into an array

implode() Converts an array into a string

Icfirst() Makes the first character of a string lowercase
str_replace() Replaces specified characters in a string

48

str_word_count() | Returns the number of words in the string

stremp() Compares two strings

strlen() Returns the length of a string

strpos() Returns the position of the first occurrence of a string inside another string
strtoupper() Converts a string to upper case

strtolower() Converts a string to lower case

substr() Returns a specified part of a string

ucfirst() Makes the first character of a string uppercase

Table 4.1 String Related Functions in PHP
As mentioned this list is far from exhaustive, it just highlights some of the functions available in PHP.
4.4 PHP Operators

There are a variety of operators available in PHP.

Arithmetic Operators Purpose Example

+ Addition Sx=1+2;

- Subtraction Sx=2-1;

* Multiplication Sx=1*2;

/ Division Sx=2/1;

% Modulus Returns the remainder from a | $x=2%1;
division

++ Increment (add one to the value) SX++;

-- Decrement (minus one from the value) Sx--;

Table 4.2: Arithmetic Operators in PHP

The increment and decrement operators are again unary operators, which means they operate on one
variable, whereas the other arithmetic operators operate on two values. The assignment operators are also
similar assighnment operators already encountered; the value from the expression to the right is assigned to

the variable on the left. The notable addition is the “.=” operator, which is used to concatenate strings.

Assignment Operators Example Equivalent

= $a=Sb;

+= Sa +=Sb; Sa=Sa+Sh;
-= $a-=Sb; $a =Sa-$b;
*= $a *= $b; $a=5a* Sb;
/= $a /= $b; $a=5a/$bh;

%= Sa %= Sb; Sa=S%a%Sb;
= Sa.=Sb Sa=S%a.Sb;

Table 4.3: Assignment Operators in PHP

PHP also has a selection of logical, or Boolean operators.

Logical Operators Purpose

== Equal to

1= Not equal to
<> Not equal to
< Less than

> Greater than

49

<= Less than or equal to

>= Greater than or equal to
&& AND

[OR

! Not

Table 4.4: Logical Operators in PHP

4.5 PHP Flow Control

Conditional statements are used in PHP to allow different actions to be performed in different
circumstances. The first option is the “if-statement”, where subsequent actions are dependent on a Boolean
expression. The “if statement” combines with the “elseif” and “else” statements to allow multiple different
outcomes. These statements can be used to nest multiple conditions inside other conditions. Each case is
tested by a Boolean expression, and if the condition is satisfied the code in the trailing braces is executed. In

this example different messages are displayed on the screen depending on the value of the variable Sx.

<?php
if(Sx>20)
{
echo “x is greater than 20”;
}
elseif($x<10)
{
echo “x is smaller than 20”;
}
else
{

echo “x is between 10 and 20”;

}

?>

The alternative to using an “If” statement is to use a “switch” statement. The “switch” statement
decides which action to perform based on the value of a variable. In the following example, the message
depends on the value of the variable S$x. The “switch” statement is particularly useful for managing menus, and

from this example a different page can be displayed in different conditions.

<?php
switch (Sx) {
case “login”:
echo “Display the Login Page”;
break;
case “register”:
echo “Display the Register Page”;

break;

50

default:
echo “Display the Guest Page”;

break;

?>

Looping, or iteration, is used to repeat the same block of code multiple times. As with other
programming languages, PHP offers “while” loops to repeat a block of code based on a Boolean expression.
The loop with repeatedly execute while the condition returns true. Care should be taken to avoid infinite loops

and ensure the loop will eventually exit.

<?php
Sx = 10;
while(Sx>0)
{
echo “There were “ . $x. “ in the bed, till someone said, roll over...
";
Sx--;
}

?>

A “while” loop may never execute, if the initial Boolean expression returns false. A related alternative

is the “do-while” loop, which will execute at least once as the Boolean test occurs after the code block.

<?php
Sx = 10;
do{
echo “There were “. Sx . “ green apples, ready to be eaten...
";
e
} while(Sx>0);
>

Both the “while” and “do-while” loop are particularly useful when the programmer doesn’t know how
many times the loop will iterate, perhaps when waiting for some input from the user. An alternative form of
iteration is the “for” loop, which is generally used when the programmer knows how many iterations should

occur.

<?php
for(Si = 0; Si<10; Si++)
{

echo “I have “. Si. “ doors, but need 1 more...
";

}

?>

51

In a “for” loop the first line sets up the loop, in three parts. First the counter is initialized, followed by
the Boolean test expression, and finally an update action, normally used to increment the counter. A further
looping statement can be used with arrays in PHP. For various reasons we may not know the size of the array,
and although PHP has a count() function which returns the size of an array, there are a variety of reasons for
iterating through an array. The “foreach” loop provides an easy way of performing some action for every

member of an array. The basic syntax for this loop is;

foreach(Sarray as Svalue) { // code }

<?php
Scount = 1;
foreach(Sstudents as Sname)
{
echo Scount . “) Student name:- “. Sname . “
”;
Scount++;

}

?>

This example loops through an indexed array, outputting the name of each student. In each iteration
the variable Sname takes on the value of each element in the array. The “foreach” loop can also work usefully

with an associative array.

<?php
Scount = 1;
foreach(Sstudents as Sname => Sgrade)
{
echo Scount . “) Student “. Sname . “ got grade “. Sgrade . “
”;
Scount++;

}

?>

With an associative array, both the key and the value contain useful information, so in this example,
in each iteration the key is represented by the variable Sname, and the value is represented by the variable

Sgrade. Obviously the array would need to be set up correctly before the loop executes.
4.6 PHP Form Validation Example

Forms are often used to collect information from a user and send it to the server. As the user could
input anything into the form, it is important to validate the inputs before processing it. Later we will examine
using JavaScript for form validation in the browser before data is sent to the server, however it is still important
to validate data in PHP, perhaps before inserting it into a database. In this example we will consider a simple
form and check if the data entered satisfies a few conditions.

52

<form action="welcome.php" method="post">
Name: <input type="text" name="name">

<input type="submit" value="Go!">

</form>

This form consists of just a text field for the user to input their name, and a submit button.

[127.0.0.1/intro.php x% 9

€ - C A [3127.00.1/intro.php

Name: John| |
Gol

Figure 4.3: A Simple Form

The form tag contains 2 parameters, an action and a method. The action parameter states which page
should be opened after the form is submitted — in this case a page called ‘welcome.php’, and the method
parameter states the way data should be sent to the new page —in this case by POST. The next step is to create
the “welcome.php” page.

<body>
Welcome <?php echo $_POST[“name”]; ?>
</body>

When the data is sent using the post method, the PHP superglobal array $_POST can be used to collect
the data. In this case the S_POST array contains a member with key “name”, and the value the user filled in
the form. Any values sent from the form will be stored in the $_POST superglobal array, so that subsequent
PHP scripts can use the data. For example, at this point the PHP code could validate the form data, to make
sure the user has submitted appropriate answers. The “welcome.php” page should look, as follows.

[127.00.1/welcome.php x% X

€« > C A [1127.001/welcomephp Q 2| =

Welcome John

Figure 4.4: A Welcome Page using S_POST

53

The key alternative to posting data is to use the “GET” method. For the form, the only change needed
is changing the method.

<form action="welcome.php" method="get">
Name: <input type="text" name="name">

<input type="submit" value="Go!">

</form>

Similarly, welcome.php needs to be updated to collect it’s data from the $_GET superglobal array.

<body>
Welcome <?php echo $_GET[“name”]; ?>
</body>

The following screenshot demonstrates a key difference between sending form parameters using the
POST method, versus using the GET method. Notice the URL of the page includes the parameters and their

values.

O -En
/ [127.0.0.1/welcome.php? X_ 5

o C A [} 127.00.1/welcome.php?name=John Q {7 =

Welcome John

Figure 4.5: A Welcome Page using S_GET

There are several similarities, and several differences between the POST and GET methods. Both
methods create and array of key=>value pairs containing the names of the form inputs and the values
submitted. Both of these arrays are superglobals, accessible from any function, class or file on the page. The
key difference demonstrated above it that the GET method passes the variables via URL parameters, and the
POST method passes variables via the HTTP POST method. These differences are important when deciding
whether to use the POST or GET method. The GET method is visible to everyone, which clearly has security
issues, and should not be used for sensitive data, in this case the POST method is useful as the data is
transferred invisibly. The URL is also limited to around 2000 characters, while there are no limits to how much
data is sent via the POST method. One advantage to sending the variables in the URL is that the new page can
be bookmarked, which isn’t possible when data is sent using POST. Nonetheless generally using the POST
method is the preferred method.

54

For testing purposes, PHP comes with a useful function that prints a human readable version of the
array, so the developer can see what values have been successfully passed from the form. The function print_r()

takes an array or object as it’s parameter and displays the contents.

<body>
<?php print_r(S_POST); ?>
</body>

As an example for the POST array, the contents are as follows;

O -EN
/ [127.0.0.1/welcome.php X_ 1

€« C A [3127.0.0.1/welcome.php Q7 =

Array ([name] == John

Figure 4.6: The POST Array

Once the form data has been posted to “welcome.php”, it could be validated. For example the name

could be tested to ensure that it is has at least 3 characters, and will output an error message if it doesn’t.

<body>
<?php
Sname =S_POST["name"];
if(strlen(Sname)<3)
{
echo "Name must be at least 3 characters.";
}
>
</body>

The form could be extended to add further fields, such as gender, and password, and these could also
be validated using PHP scripts once the form has been submitted to the server. The following file “intro.php”,

has 3 sections to the form.

<form action="welcome.php" method="post">
Username: <input type="text" name="username">

Gender:

<input type="radio" name="gender" value="male" /> Male
<input type="radio" name="gender" value="female" /> Female

55

Password:<input type="password" name="pass1" />

Re-enter Password:<input type="password" name="pass2" />

<input type="submit" value="Go!">

</form>

When the form is submitted the data is sent to the file “welcome.php”, which can perform some basic
validation.

<body>
<?php
Susername = S_POST["username"];
if(strlen(Susername)<3)

{
echo "Name must be at least 3 characters.
";
}
if(array_key_exists("gender", S_POST))
{
Sgender =S_POST["gender"];
}
else
{
echo "Gender must be specified.
";
}

Spassl =S_POST["pass1"];
Spass2 =$_POST["pass2"];

if(Spassl =="")
{
echo "Password can not be blank.
";
}
if(Spassl != Spass2)
{
echo "Passwords must match.
";
}
>
</body>

Consider briefly the differences between validating form inputs using JavaScript in the browser, versus
doing it using PHP. Performing form validation using JavaScript is useful as it traps any errors before the form
is sent to the server, which means the user won’t need to reload the page to fill the form in again. Therefore
using JavaScript for form validation is likely to improve the experience of the user. Validating the form using

JavaScript means that the data isn’t sent to the server until it satisfies the requirements, putting more work on

56

the client machine, and less load on the network and server. However, JavaScript is not a substitute for server

side validation — as the JavaScript is downloaded and run on the user’s machine and so visible to an experienced

user. As we will see in later chapters, PHP validation is also important, certainly before allowing inputs to be

inserted into a database.

Key Points

e PHPis an important Server Side programming language.

e Before running PHP code a web server needs to be set up to process PHP code.

e When a web server receives a request for PHP, first it processes the code before returning HTML.

Variables in PHP are weakly or loosely typed and can also be used to store arrays.

A form can be used to send data to the server using the post method.

e Data sent via the post method then exists within the S_POST superglobal array, or using the get

method to the S_GET superglobal array.

e The main difference between post and get is that when using get, the parameters are attached to the

url, so that it can be bookmarked.

Further Resources

1) The full documentation and complete function reference guide to PHP can be found at:-

http://php.net/manual/en/

2) The w3schools tutorial for PHP can be found here:-

https://www.w3schools.com/php/

3) A beginners guide to PHP development can be found here:-

Assignment

https://www.tutorialspoint.com/php/

Extend the basic form validation script! Create a form to register for a website. Your script should

validate the following inputs;

1)

2)
3)
4)

5)
6)

Forename — Must not be blank, must not contain spaces, and must have at least 3 alphabet
characters

Surname — Same rules as for Forename

Username — At least 5 characters and can include numbers, _and —

Password — Must be at least 8 characters, containing both upper and lower case letters,
numbers and symbols.

Age —The age must be between 18 and 110

Email — Must be of the form abc@def.ghi

Enhance your form to make sure the user re-inputs their password the same twice and hide the input from the

view.

57

Chapter 5

PHP Functions and Objects

Objectives

This chapter extends the introduction to PHP by looking closer at functions and objects. Some of the
key pre-defined functions in PHP are introduced, notably those related to arrays, mathematics and date / time
functions. The chapter also examines how programmers can create their own functions and why they would
want to. Objects are also briefly introduced, before a demonstration of how a simple calendar can be built.

This calendar will be extended in later chapters. After reading this chapter you should:-

e Be comfortable with calling existing PHP functions.

e Be aware of some of the key existing functions (related to arrays, mathematics, and dates and time).
e Be able to define your own PHP functions.

e Be able to store functions in a separate file and include them in your project.

e Know how to use include and require statements.

e Know how objects can be used in PHP.

Contents

5.1 Array Functions

5.2 Mathematical Functions

5.3 Date and Time Functions

5.4 Defining Your Own Functions
5.5 include and require

5.6 Objects in PHP

5.7 Creating a Calendar

58

The last chapter introduced the basics of programming in PHP, in this chapter we look closer at
functions and objects in PHP. Functions are a key component of coding, resulting in less typing, simpler syntax,
fewer errors, quicker loading and execution time, and importantly simpler logic. If code isn’t broken down
sensibly into functions, it quickly grows to a state where it is difficult to maintain. PHP has hundreds of functions
built in, and the previous chapter introduced some of the string related functions available to PHP developers.
Existing PHP functions can be called from anywhere in the code, a function call just needs to reference the

function name, and then contain any necessary parameters, or arguments, within brackets ().

<?php
echo strrev(“.dlroW olleH”);
str_repeat(“Hip”, 2);
Sresult = strtoupper(“hooray!”);
echo ucfirst(strtolower(“jOhN"));
>

These examples illustrate some of the string functions. The first function strrev() takes 1 parameter, a
string, and it will reverse the string and output “Hello World.”. The second function, str_repeat(), takes 2
parameters, and will repeat the string 2 times, it also demonstrates how a function can be called without the
result being used. The third function, strtoupper(), again only takes 1 parameter, but will convert the string
parameter to uppercase returning “HOORAY!”. This time the result is stored in a variable called Sresult. Finally
the last line makes 2 functions calls. Firstly the strtolower() function is called, converting the string parameter
to lower case “john”. The function then returns the new string as a parameter to the ucfirst() function, which

makes the first character upper case, leaving the ultimate result as “John”.

As developers gain experience they gain find uses for more existing functions, and with the wide
variety of existing functions available, when faced with a new problem it is worth spending time to look for and
use an existing solution before writing a new solution from scratch. There are books dedicated to listing PHP
functions in detail, as well as the excellent resources at php.net. The first part of this chapter will introduce

some of the more useful functions that PHP offers, before later discussing how to create your own functions.
5.1 Array Functions

As seen in the previous chapter, an array is a very useful type for storing a collection of data. PHP offers
a variety of functions for manipulating an array. This section introduces some of the more useful array related

functions.
5.1.1 array()

array() is used to create an array, and can be supplied with parameters to initialize the values in the
array. In this example first an array of 4 elements is created, with indexes from 0-3. The second array creates
an associative array listing 4 country codes and their respective countries.

59

<?php
Sarr = array(“ant”, “bird”, “cat”, “dog”);
Sarr2 = array(“uk”=>"United Kingdom?”, “th”=>"Thailand”, “kh”=>"Cambodia”, “za”=>"South Africa”);

?>

5.1.2 print_r()

print_r() is a function that developers can use to output a human readable version of a variable, in this
case it will display the contents of the array. It takes one parameter, the name of the array. This example

displays the two arrays created above.

<?php
print_r(Sarr);
echo “
”;
print_r(Sarr2);
>

This would display the following.

Array ([0] == ant [1] == bird [2] == cat [3] == dog)
Array ([uk] == United Kingdom [th] == Thailand [kh] == Cambodia [za] == South Africa)

Figure 5.1: print_r() in PHP

5.1.3 array_count_values()

This function counts the number of times each value occurs in the array. The function returns a new
array which matches the value as the key, and the frequency as its value.

<?php
Sarr = array("ant", "bird", "ant", "dog");
print_r(array_count_values($arr));

>

This example creates an array of 4 elements, however the word “ant” appears twice, so the result of

calling array_count_values() is as follows;

Array ([ant] == 2 [bird] == 1 [dog] == 1)

Figure 5.2: array_count_values() in PHP

5.1.3 array_diff() & array_intersect()

This function computes the difference between two (or more) arrays. It takes at least 2 arrays as
parameters, and returns an array containing any values that occur in the first array, but not in any other array.

60

<?php
Sarr = array("ant", "bird", "cat", "dog");
Sarr2 = array("ant", "bird", "ant", "dog");
print_r(array_diff(Sarr, Sarr2));

>

In this example, the string “cat” appears in the first array, but not the second array, so the result of

calling array_diff() is a new array that only contains “cat”.

Array ([2] ==cat)

Figure 5.3: array_diff() in PHP

Similar to array_diff(), PHP also has a function called array_diff_assoc(), where not only the value is
considered, but also returns array elements that don’t have the same key. While array_diff() is used to identify
the differences between 2 arrays, array_intersect() can be used to find the similarities between 2 arrays. This

time the returned array contains all the elements which are found in the second array.

<?php
Sarr = array("ant", "bird", "cat", "dog");
Sarr2 = array("ant", "bird", "ant", "dog");
print_r(array_intersect(Sarr, Sarr2));

>

This would output.

Array ([0] == ant [1] == bird [3] == dog)

Figure 5.4: array_intersect() in PHP

Note that there is also a function called array_intersect_assoc(), which computes the intersection of 2

arrays, but also considers the index as well as the value.

5.1.4 array_flip()

array_flip() will swap each key with its value, so that the keys become the values, and the values

become the keys.

<?php
Sarr = array("uk"=>"United Kingdom", "th"=>"Thailand", "kh"=>"Cambodia", "za"=>"South Africa");
print_r(array_flip(Sarr));

?>

The resulting output from this example would be.

61

Array ([United Kingdom] == vk [Thailand] == th [Cambodia] == kh [South Africa] ==za)

Figure 5.5: array_flip() in PHP

5.1.5in_array() & array_key_exists()

It is often useful to check whether an element exists in the array before performing some task on it.

in_array() tests if a given value occurs in the array and returns true if it is found.

<?php
Sarr = array("uk"=>"United Kingdom", "th"=>"Thailand", "kh"=>"Cambodia", "za"=>"South Africa");
if(in_array("Thailand", Sarr))
{
echo "That exists!";

}

?>

Related to in_array(), a further function, array_key_exists(), returns a Boolean, true if the array contains the

key, and false if it doesn’t.

<?php
Sarr = array("uk"=>"United Kingdom", "th"=>"Thailand", "kh"=>"Cambodia", "za"=>"South Africa");
if(array_key_exists("th", Sarr))
{
echo "That exists!";

}

?>

5.1.6 array_reverse()

This function, unsurprisingly, will reverse the elements in the array.

<?php
Sarr = array("ant", "bird", "cat", "dog");
print_r(array_reverse(Sarr));

>

The result of this code is.

Array ([0] == dog [1] == cat [2] == bird [3] == ant)

Figure 5.6: array_reverse() in PHP

62

5.1.7 count()

This function simply returns the number of elements in the array. It has an alias, size_of(), which
performs exactly the same thing. If the parameter isn’t an array (or a countable object), then 1 will be returned.
The is_array() function can be used to check if the parameter is an array.

<?php
Sarr = array("ant", "bird", "cat", "dog");
if(is_array(Sarr))
{
Ssize = count(Sarr); //Ssize ==

}

?>

5.1.8 shuffle()

The shuffle function will randomize the order of the elements in the array. Note that the function will

return a Boolean where true represents that the function has successfully completed.

<?php
Sarr = array("ant", "bird", "cat", "dog");
shuffle(Sarr);
print_r(Sarr);

>

Note that this function will produce different results each time it is executed, but one possible result

is as follows.

Array ([0] == cat [1] == bird [2] == dog [3] == ant)

Figure 5.7: shuffle() in PHP

5.1.9 Sorting Arrays

PHP comes with several sorting functions, depending on exactly how the array should be sorted, i.e.
whether it should be sorted based on the value, or the key, whether it should be sorted in ascending or
descending order, and whether the relationship between the keys and their values should be maintained. Table
5.1 lists 6 functions, and details how they sort an array. The basic sort function is sort(), which can be done in
reverse order using rsort(). Unlike sort(), asort() maintains the relationship between a key and its value, and
can be done in reverse using arsort(). All four of those functions sort the array based on the value, while ksort()
can be used to sort an array based on its key, with krsort() performing a reverse sort based on the key.

63

Name Sort By Order Maintain Key=>Value
Association
sort() Value Low to high | No
rsort() Value Hightolow | No
asort() Value Low to high | Yes
arsort() Value High to low | Yes
ksort() Key Low to high | Yes
krsort() Key High to low | Yes

Table 5.1: Sorting Arrays in PHP

Let’s look at the results of sorting an array using the different approaches, beginning with sort().

<?php
Sarr = array("uk"=>"United Kingdom", "th"=>"Thailand", "kh"=>"Cambodia", "za"=>"South Africa");
sort(Sarr);
print_r(Sarr);

>

This would result in the following order, notice how the association between the keys and values has

been lost.

Array ([0] == Cambodia [1] == South Africa [2] == Thailand [3] == United Kingdom)

Figure 5.8: Sorted Array in PHP

The following shows all 6 different types of sort.

sort() - Array { [0] == Cambodia [1] == South Africa [2] == Thailand [3] == United Kingdom
rsort() - Array ([0] == United Kingdom [1] == Thailand [2] == South Africa [3] == Cambodia)
asort() - Array ([kh] == Cambodia [za] == South Africa [th] == Thailand [uk] == United Kingdom)
arsort() - Arrav ([uk] == United Kingdom [th] == Thailand [za] == South Africa [kh] == Cambodia)
ksort() - Array ([kh] == Cambodia [th] == Thailand [uk] == United Kingdom [za] == South Africa)
krsort() - Array ([za] == South Africa [uk] == United Eingdom [th] == Thailand [kh] == Cambodia)

Figure 5.9: All 6 Different Types of Sort in PHP

5.2 Mathematical Functions

Much of coding involves performing calculations, and fortunately PHP has a wide selection of math-
related functions. This section introduces some of those functions.

5.2.1 abs()

Finding the absolute value, or modulus of a number can be done simply using the abs() function. It will

take a number, either integer or floating point, and return the non-negative version.

64

<?php
echo abs(-3.4); //outputs 3.4
echo abs(3.4); //also outputs 3.4
?>

5.2.2 ceil(), floor() and round()

Rounding a floating point number to an integer can be done in a couple of ways. Using ceil(), the
number will be rounded up, while using floor(), the number will be rounded down. Alternatively round() can
be used to round a number to the nearest integer, depending on whether the floating point is less than 0.5, or
not. round() can also take a second parameter which specifies the number of decimal places to round a number

to.

<?php

echo ceil(-3.4); //outputs 4

echo floor(3.4); //outputs 3

echo round(3.5); //outputs 4

echo round(3.5446, 2); //outputs 3.54
>

5.2.3 log() and exp()

The natural logarithm for a number can be found using the log() function, and conversely the exponent

can be calculated using exp().

<?php
echo log(5); //outputs 1.6094379124341
echo exp(5); //outputs 148.41315910258

?>

5.2.4 max() and min()

These two functions can accept an array as a parameter, and max() will return the highest value in the

array, while min() will return the lowest.

<?php
Sarr = array(4, 5, 3, 7, 2);
echo max($arr); //outputs 7
echo min(Sarr); //outputs 2

?>

5.2.5 pi()

The pi() function will return an approximation for pi, generally set to 14 decimal places, although the

precision can be adjusted in the PHP initialization file, ‘php.ini’.

65

<?php
echo pi(); //outputs 3.1415926535898
>

5.2.6 pow() and sqrt()

PHP offers functions for managing powers. The pow() function takes two parameters, with the base
being the first parameter and the power being the second parameter. Square roots can also be calculated

using the sqgrt() function.

<?php
echo pow(2,3); //outputs 8 (2/3)
echo sqrt(25); //outputs 5

>

5.2.7 Random Numbers

PHP offers way to generate random numbers. Earlier versions of PHP required the use of srand() to
seed a random number sequence, but since PHP version 4.2.0 this is done automatically. Random numbers can
therefore be generated using rand(). The rand() function can take 2 parameters, one for the lowest number in
the range and the second for the highest number in the range. Whilst the rand() function has been generating
random numbers for a long time, the Mersenne Twister algorithm has improved random number generation,

both in terms of speed and entropy. So, an alternative is the mt_rand() function.

<?php

echo rand(10,50); //outputs a number between 10 and 50.

echo mt_rand(10,50); //outputs a number between 10 and 50, generated using Mersenne Twister
>

5.2.8 Trigonomety

PHP has a variety of function to support trigonometry, as listed here.

Name Performs

cos() Cosine

cosh() Hyperbolic Cosine

acos() Arc Cosine

acosh() Inverse Hyperbolic Cosine
sin() Sine

sinh() Hyperbolic Sine

asin() Arc Sine

asinh() Inverse Hyperbolic Sine
tan() Tangent

tanh() Hyperbolic Tangent
atan() Arc Tangent

atanh() Inverse Hyperbolic Tangent

Table 5.2: Trigonometry Functions in PHP

66

5.3 Date and Time Functions

PHP also offers a variety of functions that help manipulate times and dates. The first thing to note is
the difference between Date() in PHP and Date() in JavaScript, with the main difference being where the
function is run —while the client side JavaScript is run on the client machine, the PHP version runs on the server,
so the results may be different depending where in the world the machine is located. The first concept to
introduce is the PHP time() function. This function will return an integer, which counts the number of seconds
since the Unix Epoch. The Unix Epoch was midnight at the start of January 1, 1970 in the UTC timezone, so
time() returns a timestamp, or in other words the number of seconds since then.

In 2016, there had been around 1.4 billion seconds since the Unix Epoch, so clearly working with a
large integer like this isn’t convenient. Fortunately PHP offers a variety of functions that can make time
manipulation simpler. The date() function can be used to reformat the timestamp, to produce a string that can
display dates in different ways, depending on the parameters sent to it. There is a lot of flexibility for formatting
dates, but here are some examples. These three examples will output the same timestamp (now), in different

formats.

<?php

echo date("d/m/Y") . "
"; //outputs the date for example:- 24/07/2016

echo date("h:i:sA") . "
"; //outputs the time for example:- 01:09:58PM

echo date("l jS M, Y") . "
"; //outputs a date for example:- Sunday 24th July, 2016
>

There are a wide variety of parameters that can be used to change the format of the date string,
depending on the characters used. Note that the character is case sensitive, and lower case characters may
return a different result to upper case characters.

Character | Description Example

d 2 digit day of the month 01to31

D 3 letter text representation of day Sun to Sat

j Day of month without leading zero 1to31

I Full day name Sunday to Saturday
N Number of day of the week 1 (Monday), to 7 (Sunday)
S 2 character suffix for day of the month st, th, nd, orrd

z Day of the year 0-365

W Week number in the year 0-52

F Name of the month January — December
m Number of the month 01-12

M 3 letter representation of the month Jan —Dec

n Number of month, without leading zero 1-12

t Number of days in the month 28,29,30,31

L Boolean 1 if a leap year, 0 if not. lor0

Y 4 digit representation of year 2016 or 2001

y 2 digit representation of year 16 or 01

a Lower case am or pm am or pm

A Upper case AM or PM AM or PM

67

g Hour, in 12 hour format 1-12

G Hour, in 24 hour format 0-23

h Hour, in 12 hour format, with leading zero 01-12

H Hour, in 24 hour format, with leading zero 00-23

i Minutes 00-59

S Seconds 00-59

T Timezone abbreviation EST, GMT

Table 5.3: Parameters for the PHP date() Function

As can be seen from the examples above there is great flexibility in how to display the date, and
realizing that dates are stored as an integer, representing the number of seconds means that calculations can
be made when dealing with different dates.

5.4 Defining Your Own Functions

While PHP has many useful functions available for developers to use, it is inevitable that more
functions will be needed to satisfy specific problems, and to sensibly break down larger problems into
manageable ones. Defining functions in PHP is also relatively straight forward. The general syntax for defining

a new function is as follows.

function functionname(parameterl, parameter2)

{
//Statements

}

A value could be returned from the function as shown in the following example.

<?php
function average(Sv1, Sv2, Sv3)
{
return (Sv1 + Sv2 + Sv3)/3;
}

?>

Given that the value returned from a function could be of any type, that type could be an array (or an

object), which means that multiple values could be returned from one function.

<?php
function average()
{
Svl =4;
Sv2 =5;
Sv3 = 6;
return array(Svi, Sv2, Sv3)
}

?>

68

Reference parameters are also possible in PHP, by simply attaching an ampersand “&” to the
parameter during the function definition. Regular, value, parameters will make a copy of any data that is sent
to the function, while with reference parameters a reference to the memory location of the data is used, which
means the same data is used in the function as from where it is called. The following example demonstrates
the concept of reference parameters. The function called increment is defined with 2 parameters, the first is a
regular call by value parameter, while the second is a call by reference parameter. In the function, both
parameters are incremented. The demonstration shows how the first parameter remains the same before and

after the function is called, while the second parameter increases.

<?php
Sx=3;
Sy=4;

echo"x=".Sx."&y=".Sy."
"; //outputs “x=3 & y=4"
increment(Sx, Sy);
echo"x=".%x."&y=".Sy."
"; //outputs “x=3 & y=5"
function increment(Sv1, &Sv2)
{

SVi++;

Sv2++;

}

?>

As can be seen in this example, functions can be written anywhere within the PHP files, and it may
make sense to define the functions at the bottom of the page so they are moved away from the rest of the
code. Alternatively, it makes more sense to move functions to a separate file. Overtime more useful functions
are created, so they could be moved to a separate file, perhaps called “functions.php”. The functions file can
then be included on any page that needs it with the following “include” statement, using the appropriate

relative url to identify the file.

<?php
include “functions.php”;

?>

5.5 Include and Require

As a project grows, it may well make sense to break parts of each page into multiple files, each of
which can be included using the include statement. Consider a website where every page has the same header,
the same navigation panel, and the same sidebar, and only the content of a main panel is different. In this case
each page could simply include the header, and include the navigation section. In the next chapter we will

explore how functions required to connect to a database can be separated.

69

<?php
include “functions.php”;
include “header.php”;
include “navigation.php”;
include “side-bar.php”;
// Main Content Here
include “footer.php”;

?>

Suppose a change is needed to the navigation pane, or to the sidebar, and that change needs to be
made throughout the whole website. Using the techniques we have discussed so far, all pages would need to
be edited, whereas if the navigation is separated into a single file, “navigation.php”, any changes would only
need to be made in a single place to affect the whole website. The “include” statement is a very useful part of
PHP, and is closely related to another statement “require”. The difference between ‘include’ and ‘require’
appears when the file can’t be found. If the file doesn’t exist, attempting to include it using the include
statement will produce a warning, while with require it will produce a fatal error. Asides from that, the require

statement is very similar to the include statement.

<?php
require “functions.php”;

?>

As a project grows, and potentially includes multiple developers, another scenario could potentially
arise. Multiple files could end up including multiple other files, where file A could include file B and file C, while
file B also includes file C. This could lead to naming problems if the same function names are used in multiple
locations. Fortunately this could be simply resolved using “include_once”, or “require_once”, which is

essentially the same, except it ensures any file will only be included once.

<?php
include_once “functions.php”;
require_once “database.php”;

?>

5.6 Objects in PHP

PHP also supports the creation of objects, where the developer can create new types of data, and
define how that data can be used. Objects are defined in a class, which defines both the data parts of the object
and any member functions, or methods, that can be called for a function. The following creates a simple
fraction class that consists of a numerator and a denominator, and has a function to display the fraction. This
book won’t dive deeply into the concepts of Object Oriented Programming (OOP), but this example
demonstrates a simple class, as more objects will be encountered in coming chapters. In this example, both
the method and the variables are public, which means they can be accessed from anywhere in the code.

70

<?php

class fraction

{
public Snum, Sdenom;
function display()
{

echo Sthis->num . “/” . Sthis->denom;

}

}

?>

This means an object can be initiated, which in PHP uses the new keyword. The members can then be

accessed using the arrow operator “->”.

<?php
Sf1 = new fraction;
Sfl->num = 1;
Sfl->denom = 2;
Sf1->display();

>

Further OO concepts can be implemented in PHP. Constructor functions are automatically called when
an object is initiated, using the new keyword. A constructor function can be created using the __construct

function.

<?php
function __construct()

{

Sthis->num = Sthis->denom = 1;

}

?>

The example given above makes the members public, but protected and private are also valid, where
private members can only be accessed through an interface created by the class, and protected members can
be accessed from within the class or subclasses. This shows that PHP also supports inheritance where one class

can extend another class.
5.7 Creating a Calendar

In this next section we put together several of the topics covered so far, to create a very simple
calendar. This version of a calendar provides a form for the user to create an appointment, and once the
appointment has been created a calendar is displayed with the appointment on display. There are many ways
that the calendar can be developed further, using techniques that will be discussed later in the book. The

71

calendar begins with a simple form with just 2 input fields, one for the date, and one for the title of the
appointment. Note that css can be used to make the form look more attractive.

<form action="calendar.php" method="post">
Date: <input type="date" name="date">

Title: <input type="text" name="title" />

<input type="submit" value="Go!">

</form>

Note that input for the date uses the input type ‘date’, which provides a drop down box to easily
choose a date. The form action is to send the data to ‘calendar.php’, using the post method. The main calendar
file will then display a calendar that looks something like the image below.

[Sunday |Monday |[Tuesday [Wednesday |[Thursday |[Eriday ||saturday
1 2

3 H > o 7 g 9

10 11 12 13 14 13 16

Mveeting

17 18 19 20 21 22 23

24 25 26 27 238 29 30

31

Figure 5.10 A Calendar in PHP

72

The month is broken down into days, with each day presented on a grid. This particular month (July
2016) began on a Friday, so there were 5 blank days before the 1%t appears on Friday. Similarly at the end of
the month there are 6 blank days as the month ended on a Sunday. The appointment, “Meeting”, was made
for Thursday 14, Also today (26™) is highlighted.

The first part of the calendar.php file is used to create variables storing the data needed to draw a
calendar, this data includes which month of which year is being displayed, and how many days there are in that
month. The first day of the month is also calculated, as well as today’s date, (day, month and year). To do this

some of the date related functions discussed in this chapter are used as illustrated in the following code sample.

<?php
Sday = date('d’, strtotime(S_POST['date'])); //Gets day of appointment (1-31)
Smonth = date('m’, strtotime($S_POST['date'])); //Gets month of appointment (1-12)
Syear = date('Y', strtotime(S_POST['date'])); //Gets year of appointment (e.g. 2016)
Sfirstday = date('w', strtotime('01-' . Smonth . '-' . Syear)); //Gets the day of the week for the 15t of

//the month. (e.g. 0 for Sun, 1 for Mon)

Sdays = date('t', strtotime($S_POST['date'])); //Gets number of days in month
Stitle =$_POST['title']; //Gets appointment title
Stoday = date('d'); //Gets today’s date
Stodaymonth = date('m'); //Gets today’s month
Stodayyear = date('Y'); //Gets today’s year

>

Looking closer at the calendar, each day consists of a square, surrounded by a black border. The
column headers are a different height, but the rest of the days are nearly the same. The main difference (apart
from the number) is that the blank days are shaded, today is highlighted. These all concern the style of each
box, so this of course can be handled by css. In the following code block a number of selectors are created,

beginning with a wrapper for the whole calendar, and then selectors for different kinds of boxes.

.calendar{
position:relative;
width: 960px;

}

div.date, div.days{
width: 120px;
border: 1px solid black;
float: left;
margin: 1px;

}

.blankday{

background:#ccc;

}

73

div.date{
height: 120px;

}

.today{
background:#cfc;

}

The top row of the calendar shows the names of each day, which can use the days selector to create

a box with width 120px for each day.

<div class="calendar">
<div class="days">Sunday</div>
<div class="days">Monday</div>
<div class="days">Tuesday</div>
<div class="days">Wednesday</div>
<div class="days">Thursday</div>
<div class="days">Friday</div>

<div class="days">Saturday</div>

PHP code can then be used to display the rest of the calendar. This is done in 3 parts — first a number
of blank days are created, depending on which day of the week the month begins. Each box is given the

selectors date and blankday.

<?php
for(Si=1; Si<=Sfirstday; Si++)
{
echo '<div class="date blankday"></div>';
}
>

Secondly the actual days of the month can be displayed, using a for loop to loop through each day in
the month. Each box is given the ‘date’ selector, but if the day matches today the ‘today’ selector is added. As
the variable Si is incremented it can be displayed in the box. Finally if the day matches the appointment, the

title of the appointment is also added.

<?php
for(Si=1; Si<=Sdays; Si++)
{
echo '<div class="date';
if (Stoday == Si && Stodaymonth==Smonth && Stodayyear == Syear)
{
echo ' today';

}

74

echo '"">'. Si. '
';
if(Sday==5i)
{
echo Stitle;
}
echo '</div>';
}

?>

Finally the remaining blank days can be displayed, after a quick calculation to find how many extra

days are needed at the end of the month.

<?php
Sdaysleft = 7-((Sdays + Sfirstday)%7);
if(Sdaysleft<7)
{
for(Si=1; Si<=Sdaysleft; Si++)
{
echo '<div class="date blankday"></div>';
}
}
>
Key Points

e PHP has many existing functions that can be called to make coding simpler.

e Arrays are a useful way of managing collections of related data.

e PHP has several existing functions to assist with managing arrays, including several sorting functions.

e All common mathematical functions exist within PHP.

e Time is counted as an integer for the number of seconds since the Unix epoch, but to make life easier
PHP has functions for formatting the time and date in different ways.

e Although PHP has plenty of existing functions, good programmers break their code down into more
functions.

e The include and require statements are another great way of dividing up a larger project, by allowing
the programmer to include any files that are needed.

e Objects allow developers to create new types of data by combining data and behavior.

Further Resources

1) php.net provides a complete reference guide to the existing PHP functions, which can be found here:-

http://php.net/manual/en/funcref.php

75

2) php.net also provides a guide to creating your own functions, found here:-
http://php.net/manual/en/language.functions.php

3) wa3schools offers both a guide to existing PHP functions, and a guide to creating more functions, here:-
https://www.w3schools.com/php/php_functions.asp

4) A further tutorial to PHP functions can be found at tutorialspoint.com, here:-
https://www.tutorialspoint.com/php/php_functions.htm

5) KillerPHP has a beginners guide to creating and using objects in PHP, here:-

https://www killerphp.com/tutorials/php-objects-page-1/
Assignment

This chapter includes a tutorial for creating a simple, basic calendar. Once you’ve built the basic
calendar, use CSS to make it look more attractive. Add links to allow the user to move from month to month.
This calendar offers a month view, extend it to add a week view and a day view that users can use to get more
details on their screen —make sure your calendar is user friendly, so users can understand how to use it without

being taught!

76

Chapter 6

PHP Files & MySQL Databases

Objectives

This chapter continues to expand writing code in PHP to run on the server, this time focusing on how

to store data on the server. First files are introduced, explaining how PHP can manipulate files on the server,

including managing security issues. An important part of the WAMP stack is MySQL, which refers to the

database on the server where data is stored, so the second half of this chapter focuses on MySQL and how PHP

is used to manage this data. After reading this chapter you should:-

Be able to read, write and append files stored on your server by using PHP code.

Understand chmod() and how to manage access permissions for files.

Be able to use phpmyadmin to create and manage databases on your server.

Understand the basics of Structured Query Language (SQL) and how it can be used to retrieve, insert,
update and delete data from the database.

Know how the MySQLi extension is used to allow PHP to run SQL queries.

Understand both the procedural and object-oriented approaches to MySQLi.

Contents

6.1 PHP and Files
6.2 Introducing MySQL and phpmyadmin

6.3 Structured Query Language
6.4 MySQLi

77

At the end of the previous chapter, a simple calendar was displayed with an appointment. This
demonstrated again how forms can be used to pass data from one page to another, but unfortunately the data
was only stored temporarily in variables, which means if the browser is closed and reopened, all the data will
be lost. Fortunately PHP offers easy ways of storing data permanently and in this chapter we will investigate
storing data in files, or in a database. PHP offers convenient ways of storing data in files on the server, but often
a better way is to use the MySQL database, which is part of the WAMP stack, and has a good interface with
PHP.

6.1 PHP and Files

PHP offers a selection of functions useful for reading and writing from files stored on the server. We

begin with a simple example that writes “Hello World” to a file.

<?php
Sfile =fopen("test.txt", "w");
fwrite(Sfile, "Hello World");
fclose(Sfile);

>

This example calls 3 file related functions, ‘fopen()’, ‘fwrite()’ and ‘fclose()’. If you open this example
in your browser, nothing will appear, but checking in the same directory a new file will have been created,
called ‘test.txt’, and this file will contain the text “Hello World”. The first function is fopen(), to create a handle
that is connected to afile. The function takes 2 parameters, the first being the name of the file, and the second
being the mode that the file is opened, in this case the mode is “w”, for ‘write’. There are several different

modes by which a file can be opened.

Mode | Description

r Read only. Starting at the beginning of the file

r+ Read / Write. Starting at the beginning of the file

w Write only. Clears the file if it isn’t empty, or creates a new file if it doesn’t exist
w+ Read / Write. Clears the file if it isn’t empty, or creates a new file if it doesn’t exist
a Append. Writes to the end of a file, or creates a new file if it doesn’t exist

a+ Read / Append. Keeps file content and writes to the end of the file

X Write only. Creates a new file, and returns an error if the file exists

X+ Read / Write. Creates a new file, and returns an error if the file exists

Table 6.1: PHP File Open Modes

Once the file has been opened in one of the modes listed above it can be written to, or read from,
obviously dependent on the mode. Matching the fopen() function, is the fclose() function. While fopen()
creates a handle which acts as a connection to an open file, fclose() closes that handle when the file is no longer
needed. It might be tempting to forget about fclose(), as when the script ends, PHP will automatically close
the connection for you. However, on top of it being good programing practice to always close file connections,
there are several reasons to. The file may be locked by the script until the end, which may prevent other scripts

from accessing it, or PHP may crash leaving an open connection, or as code evolves in the future what was

78

once a safe exit, may become a problem. Simply put, match the fopen() function with a fclose() function when

the handle is no longer needed.

As demonstrated in the previous example, writing to a file is done using fwrite(), which takes two
parameters, firstly a file handle (as created with fopen()) and secondly the string that should be written to the
file. Once a file has some content that content is saved even if the server is rebooted, so data will persist and
can be used again. The obvious way to access that data again, and the opposite of fwrite() is of course fread().
The fread() function takes 2 parameters, the first being the handle for the file to be read, and the second being
the number of bytes to be read. If it is unknown how many bytes to read in, the filesize() function can be used
to read in the whole file. In this example filesize() will return the number of bytes in the test.txt file, and so

fread() will read the whole file into Scontent.

<?php
Sfile =fopen("test.txt", "r");
Scontent = fread(Sfile, filesize(“test.txt”));
fclose(Sfile);

?>

There are alternatives to fread(), such as using fgets(), which will return a line of text from the open
file, stopping at a line break. This can be used alongside feof(), which stands for ‘file end of file’, in a loop that
reads in each line until the end of the file. The following code will loop through a file until the end, outputting

the contents onto the page.

<?php
sfile =fopen("test.txt", "r");
while(!feof(Sfile))

{
echo fgets(Sfile) . “
”;
}
fclose(Sfile);
?>
Just as fgets() is related to fread(), another function fputs() is an alias for fwrite().
<?php

Sfile =fopen("test.txt", "w");
fputs(Sfile, "Hello World");
fclose(Sfile);

>

Another related function called file_get_contents() reads the whole contents of a file returning a
string, while file_put_contents() can be used to write a string to a file. Another way of reading content from a
file is to use the file() function which reads a file into an array, with each line becoming the next index of the

array. There are several other useful PHP functions for managing files.

79

6.1.1 basename()

The basename() function returns the filename, given the path to a file. The path to a file contains all
the directories and subdirectories necessary to locate a particular file, while basename() will simply return the

name of the file. This could be useful when a path is stored as a variable.

<?php
Spath = “/www/code/test/index.php”;
echo basename(Spath); //outputs “index.php”
echo basename(Spath, “.php”); //outputs “index”
>

6.1.2 mkdir(), rmdir(), chmod()

PHP can create, delete and edit directories within the file system, including changing the access
permissions to those directories or files within directories. Firstly to create a new directory, or folder, the
mkdir() function is used.

<?php
mkdir(“newfolder”, 0777);
>

This example creates a new directory called “newfolder”. The second parameter sets access
permissions to the new directory, but is optional, and by default “0777”. Access permissions consist of 4

numbers;

e The first number is always 0
e The second number is for permissions for the owner
e The third number is for the owner’s user group

e The fourth number is for everybody else

There are a variety of different values available, depending on whether the user should be able to

read, write or execute files stored in the directory.

e 1 =execute permissions
e 2 =write permissions

e 4 =read permissions

Given this example 0777 allows read, write and execute permissions for all users. While this is
sometimes the intended security levels, clearly this may cause security issues. Security is a major issue within
web development, which is discussed further later, but clearly the access permissions to folders needs to be

managed carefully. Common alternatives are;

e 0644 —Read and write for the owner, but only read for anyone else

80

e (0755 - Everything for the owner, but read and execute for everyone else

The opposite of mkdir() is of course to remove a directory, which can be done using rmdir().

<?php
rmdir(“newfolder”);

?>

The function for changing access permissions to a file or directory is chmod().chmod() takes two
parameters the name of the file (or directory), and the new access permissions.

<?php
chmod(“newfolder”, 0644);

?>

6.1.3 scandir(), is_dir(), is_file(), is_executable(), file_exists()

When navigating a file system it may be necessary to find out what files and subdirectories exist within
a file, scandir() will return an array of the contents of a directory. Any directory may contain a number of files
and a number of subdirectories, so PHP has functions for determining which members of the array are files
and which are directories; both is_dir() and is_file() return a Boolean. Some files could be executable, and the
is_executable() function will test that. Also related to this file_exists() can test whether a filename is contained

within a directory.
6.1.4 copy()

The copy function simply makes a copy of a file, taking two parameters, the source of the file, and the

target of the file. The function returns TRUE when it successfully copies a file.

<?php
copy(“source.txt”, “target.txt”);
>

6.2 Introducing MySQL and phpmyadmin

Files offer a convenient way for developers to store data on the server so that the data remains even
when nobody is connected to the website. The calendar appointments from the last chapter could be written
to afile, and then read in when the page is reopened. However, files do have several limitations. Firstly, as files
become larger they are slower and less convenient to work with. Searching for particular data within a file can
be difficult — consider searching a file with all the appointments created to find all the appointments for a
particular day, for a particular user. Reading from files begins at the start of the file, so data is accessed
sequentially. When writing to files, the options are to overwrite the file, or append to the end of the file.
Randomly reading, writing or deleting in the middle of a file is not straight forward. Managing data stored in
files is also limited, there are access permissions, but only with limitations. There is also a potential problem
with concurrent access to a file, when perhaps more than one user tries to read or write a file at the same time.

For these reasons we will examine an alternative to using files, introducing the database.

81

MySQL is a database server that scales ideally for both small and large applications. Standard
“Structured Query Language” or SQL is used to interface with the database. It is free and easy to use, coming
as part of the web development stack discussed previously. In MySQL data is stored in database objects called
tables. A table being a collected of related data, consisting of rows and columns, much like a spreadsheet. Data
can be related across multiple tables allowing more complex queries to be run. The phpmyadmin tool is very
useful for looking at the database, which can be accessed via localhost/phpmyadmin.

The phpmyadmin tool provides a graphical user interface (GUI) for easily manipulating the databases
& tables. When first opened, the first page provides some information about which version of the server is
being used and any warnings about the configuration, a list of any existing databases and a menu that looks
similar to the image below.

€« C A |1 127.00.1/phpmyadmin/ Qiy =
CTlocalhost
php :
Databases L SQL & Status 2 Users ws Export |o) Import ¢ Settings w More
D 3 el ¢

Figure 6.1: PHPMyAdmin Menu

We will soon see how PHP can be used along with SQL to interact with the database, but sometimes
tasks can be simpler using phpmyadmin, for example when first creating a database and setting up tables.
Simply click on the “Databases” tab, and there is an option to explore an existing database or to create a new

one.
CTlocalhost

Databases || SQL e Status 2: Users s Export | |5} Import
Databases

o Create database

Collation r Create

Figure 6.2: Creating a Database in PHPMyAdmin

To create a database, just input a name. For now we can ignore the “Collation” drop down menu.
Collation refers to the character set (charset) being used, and how string matching is performed in the
database. We will be more concerned with security later, but the “Users” tab can be used to create new users
and allocated them different levels of access. By default the root user is used. The “Import” and “Export” tabs
should be self-explanatory, and particularly useful for backing up a database.

82

rTlocalhost = @ calendar

b Structure | SQL ; b - Import + More

o

Mo tables found in database

9 Create table

Mame: Mumber of columns:

G0

Figure 6.3: Creating a Table in PHPMyAdmin |

Initially when a new database is created, it contains no tables, and no data, but again phpmyadmin
provides an intuitive GUI to set up the database’s structure. When a new table is created, it is necessary to
specify the name of each column, the type of data it will contain, and often the size of the data. There is a lot
more to database design, and normalization, including indexes and foreign keys. This book won’t cover these
topics in depth, but recommend interested database designers to investigate further. For the purpose of
demonstration, we can use phpmyadmin to create a simple table that can contain data about calendar

appointments. It will have 4 columns.

Table name: | appointments Add |1 column(s) | Go
Structure .
Name Type Length/Values . Default Collation Attributes Null Index A_I Comments
v v v v - v v
id INT 4 None
date DATE T None T r h = r
title VARCHAR T a0 None T r h = r
details TEXT hd None hd v M = r
Table comments: Storage Engine: Collation:

InnoDB r b

PARTITION definition:

Save | Cancel

Figure 6.4: Creating a Table in PHPMyAdmin Il

In this example, the first field is used to store a unique id for each entry. The type of data is an integer,
with a length of 4. The A_l, or auto increment, field is checked, so new appointments will automatically be
given the next number. The second field stores a date. The third stores the title, which has the type “VARCHAR”,

83

or variable character field, which can store letters or numbers, in this case the length of the title is capped at
40. The details of the appointment can be stored in the fourth field, which uses the type text. Once the table
is created, phpmyadmin provides different ways to view and interact with it. Notice in the following screen the
view is of the appointments table, in the calendar database, stored on localhost.

T localhost » @ calendar » B appointments

W Structure | [SQL #i Insert | [Export |} Import | J* Operations = 2o Triggers

MySOL returned an empty result set (i.e. zero rows). (Query took 0.0004 sec)

SELECT "

FROM “appointments’

LIMIT O 30

Profiling [Inline] [Edit] [Explain SQL][Create PHP Code][Refresh]

Name Type Collation Attributes Null Default Extra Action
1id int(4) No Wone AUTO_INCREMENT 7 Change ¢ Drop Browse distinct values & Primary [Unique _|m[\e= [T Spatial [§] Fulltext
2 date date No Norne o' Change Q Drop Browse distinctvalues = Primary |y Unique -|Index [T Spafial 7 Fulltext
3 titke varchar(40) latin1_swedish_ci No None &’ Change @ Drop Browse distinctvalues > Primary [Unique [Z]index [¥ Spatial [Fulltext
4 details text latin1_swedish_ci No None o' Change @ Drop Browse distinct values 2 Primary |y Unique Index [T Spatial | Fulltext

t Check All / Uncheck All With selected Browse _° Change 3 Drop Primary |4 Unigue -] Index

(& Printview &3 Relation view Ji§ Propose table structure g

FiAdd |1 column(s) @ AtEnd of Table © AtBeginning of Table © After| id v | (Go

Figure 6.5: Table Structure in PHPMyAdmin

Clearly, as the table has just been created, it is empty, so a MySQL query returns zero rows. There are
several tabs available that are worth exploring. The first tab “Browse” allows you to view the data stored in the
database - this opens by default, but only when there is data to view. The second tab, “Structure”, is for viewing
how the data is organized and structured. This is displayed above and gives metadata about the various
columns in the table. The third tab is the “SQL” tab, which allows a database administrator to run SQL queries
on the table.

6.3 Structured Query Language

Structured Query Language, or SQL, is a database language for accessing a variety of databases,
including MySQL, Oracle, Access and others. The screenshot above shows a first SQL statement, which returned

no results.

SELECT * FROM appointments LIMIT 0, 30;

The general syntax of a SELECT statement is as follows. Each of these examples can be tested using the
“sSQL” tab in phpmyadmin.

SELECT column_namel, column_name2 FROM table_name;

The SELECT keyword is used for retrieving data from a database, and the query can specify which

“uxn

columns to retrieve from which table. Notice that using the wildcard “*”, all columns will be retrieved. Also
adding the LIMIT keyword, not all results will be displayed. In this case the first 30 results would be returned,
or specifically the results between 0 and 30. A WHERE clause can also be used to refine the results returned by

a SELECT statement. The following query would only return results where the id equaled 1.

84

SELECT * FROM appointments WHERE id=1;

In this case a single ‘=" sign is used as the operator for testing equality. Other operators may be used
in a WHERE clause, including ‘<>’ for not equal, <, >, <= and >=. Queries can become more sophisticated using
the Boolean operators ‘AND’ and ‘OR’.

6.3.1 INSERT Statement

The “INSERT” Statement is used to add data into a database. The basic structure of an INSERT
statement is to specify the table name and then the data to add to it. A new row can be created by adding

appropriate values.

INSERT INTO table_name VALUES (valuel, value2,...);

In a database it is common that some values don’t exist, and so some fields are left blank, or as NULL.
Therefore it is common to specify which columns to insert data into using the following form.

INSERT INTO table_name (columni, column2,...) VALUES (valuel, value2,...);

Using this version we could insert data into the appointments table.

INSERT INTO appointments (date, title, details) VALUES ("2016-08-05", "Meeting", "All day in room 401");

Now the table can be browsed using the SELECT statement introduced earlier, and the new data will
appear. Notice that although no data was inserted into the auto-incremented id column, the row has been
givenid 1.

Mlocalhost » @ calendar » BB appointments

| Browse o Structure = L[SQL , Search #¢ Insert « Export =+ Import = 4 Operations @ 2= Triggers

" Showing rows 0-0(~1total « , Query took 0.0003 sec)

SELECT *

FROM “appointments
LIMIT 0. 30

Profiling [Inline] [Edit][Explain SQL][Create PHP Code][Refresh]

Show: Startrow: |0 Mumber of rows: | 30 Headers every | 100 rows

+ Options
— T — + id date title details

o Edit e Copy (@ Delete 1| 2016-08-05| Meeting | All day in room 401

1 Check All/ Uncheck All With selected: _» Change @ Delete [Export

Show: Startrow: |0 Number of rows: | 30 Headers every | 100 rows

Figure 6.6: Browsing a Table in PHPMyAdmin

85

6.3.2 UPDATE Statement

The “UPDATE” can be used to change data that is already stored in a database. The syntax for an
UPDATE statement is as follows.

UPDATE table_name SET columnl=valuel, column2=value2 WHERE column=value;

The UPDATE statement includes a “WHERE” clause, which should not be omitted, otherwise all data
may be updated. An example UPDATE statement for the previous example could be as follows.

UPDATE appointments SET details="Meet at 9AM" WHERE id = 1;

Naturally this statement will overwrite the existing contents of the details field.

M localhost » B calendar » B appoiniments

| Browse ¢ Structure | L[| SQL . Search ¥« Insert «= Export =: Import 4° Operations 2= Triggers

« Showing rows 0-0 (~1total 4 , Query took 0.0004 sec)

SELECT"
FROM “appointments
LIMIT O, 30
Profiling [Inline] [Edit][Explain SQL][Create PHP Code][Refresh]
Show: Startrow: |0 Number of rows: | 30 Headers every | 100 rows
+ Options
—T1— ¥ id date title details

.7 Edit & Copy @ Delete 1| 2016-08-05 | Meeting | Meet at 9AM
t Check All/ Uncheck All With selected: 7 Change (g Delete [Export

Show: Startrow: |0 Mumber of rows: | 30 Headers every | 100 rows

Figure 6.7: An Updated Table in PHPMyAdmin

6.3.3 DELETE Statement

The previous statements are useful for writing to a database, updating a database, and reading from
a database. A further important operation is to delete from a database, and this uses the “DELETE” keyword.
The general syntax for DELETE is.

DELETE FROM table_name WHERE column_name = value;

Note that the WHERE clause is important, as without it all the data in the database could be deleted.
The data in the example table could be deleted using the following command, resulting once more in an empty

database.

DELETE FROM appointments WHERE date = "2016-08-05";

86

These examples have demonstrated some basic SQL queries — there are plenty of more advanced
enhancements that can be done to improve queries, but the basics of inserting, updating, selecting and deleting
are enough to get started. These examples can be explored using phpmyadmin, which means that they could
be performed by a database administrator, or anyone who has access to the server. When writing web
applications it is much more likely that users will want to update data in the database, without needing to
understand SQL. As the database is stored on the server we can use PHP to communicate with the database.

In the next section we will investigate the API that PHP offers for working with MySQL.
6.4 MysQlLi

The MySQLi extension an APl used for manipulating a MySQL database using PHP. It is short for MySQL
improved, due to being an improvement on the original MySQL PHP extension. There are alternatives, but this
chapter will focus on MySQLi. MySQLi offers 2 alternative means; a procedural approach and an object oriented
(O0) approach. This chapter will explore both.

6.4.1 Establishing a connection

The first step in the process of PHP communicating with a database is to establish a connection. This
can involve the username and password to ensure the script has permissions to access the data. Once the
connection has been established queries can be made on the database, until finally the connection needs to
be closed. It is very often a good idea to move the connection scripts to a separate database file, perhaps called
‘database.php’, and then include this file whenever another file needs to connect to the database. Repeating
the database connection script in multiple files can cause security issues as well as creating headaches when
passwords need to be changed in the future.

To connect and disconnect using the procedural approach, the following functions are called.

n o« noua

Slink = mysqgli_connect(“localhost",“username",“password",“databasename") or
die("Error" . mysqli_error(Slink));

//Some Code
mysqgli_close(Slink);

In this case the script attempts to connect to a database by calling the mysqli_connect() function. This
function takes 4 parameters, the server (in this case localhost), username and password, and finally the
database to connect to. If it fails to connect, and error can be generated. The mysqli_connect() function returns
a handle which is then used as a reference for any further queries. In this way it is possible for a script to have
multiple connections open to multiple different databases. When the database connection is no longer needed
it is released by calling the mysqli_close() function. This is known as the procedural approach, because it uses
procedures or function calls to communicate with the database. The alternative approach is to create a
database object to manage the connection. The equivalent OO approach is as follows.

no« non

Smysgli = new mysqli("localhost", “username", "password", “databasename");
// Some Code
Smysqli->close();

87

The code here is similar, however now the Smysqli object is created, and member functions for this
object can be called using the arrow (->) notation.

6.4.2 Querying the database

Once the connection has been successfully established, queries can be called in different ways, depending
on whether the procedural or OO approach has been used. It is a good idea to create a string variable for the

query and then pass this to a function call.

Sqryl = “CREATE DATABASE calendar”;
Sqry2 = "CREATE TABLE users (FirstName varchar(15), LastName varchar(15))”;
Sqry3 = “INSERT INTO appointments (date, title, details) VALUES (‘2016-08-06’, ‘Exam’, ‘9AM’)”;

Notice how different quotes are used to distinguish the string values in the final example. These three
examples could be used to create a database, create a table and insert data into the appointments table.
Sometimes it is worth testing the query using phpmyadmin before using it in the code as errors are provided
directly there while if there is a mistake in the query executed by PHP, there may be no error, but the code

may simply not run. Any of these examples can then be executed as follows.

mysgli_query(Slink, Sqry1); //procedural approach
Smysgli->query(Sqry3); // OO0 approach

Notice that the procedural approach calls the mysqli_query() function with 2 parameters, firstly the
handle created earlier during connection, and secondly the query. The OO approach calls the query() member
function for the database object created earlier. This approach can be used for most of the queries discussed
so far — the exception being a SELECT statement, as PHP needs to manage the results returned from the

database after this query.
6.4.3 PHP and SELECT statements

The SELECT statement will return a number of rows of data depending on how many rows satisfy the
select query. These rows of data can then be stored in a variable, an array or an object, that can be further
processed by PHP. The first examples only demonstrate finding out how many rows are returned by the query,
rather than processing them in any way.

nou (7

Slink = mysqli_connect(“localhost",“username",“password",“databasename");
Sqry = “SELECT * FROM appointments”;
if (Sresult = mysqli_query(Slink, Sqry)) {
echo “There are “ . mysqli_num_rows(Sresult) . “ rows!”;
mysqli_free_result(Sresult);
}
mysgli_close(Slink);

This procedural example shows a query which selects every entry from the appointments table. Having
called the mysqgli_query() function, the results are stored in a special kind of variable called Sresult. This variable

contains a mysqli_result type object, and shortly we will examine how this object can be used. For now, it can

88

be sent as a parameter to the mysqli_num_rows() function which returns how many rows have been found in
the database. Notice that once the result is no longer needed it is sent as a parameter to the
mysqli_free_result() function, which frees up the memory associated with the query. While initially the
memory used by a query like this may appear small, it is good practice to tidy up memory after the query. The
00 approach is somewhat comparable, but this time using the member functions num_rows() and close().

"o« non

Smysqli = new mysqli("localhost", “username", "password", “databasename");
Sqry = “SELECT * FROM appointments”;
if (Sresult = Smysqli->query(Sqry)) {
echo “There are “. Sresult->num_rows . “ rows”;
Sresult->close();

}

Smysqli->close();

In both cases the Sresult variable contains the mysqli_result object containing the rows of data that
satisfied the query. This result data object can be used in several different ways. The first thing to realize is that
the data object will contain a number of rows. Each row can be retrieved from the data object in different
formats; an array, an associative array, or as an object. Because the number of results is initially unknown, a
while loop is a sensible control structure for retrieving data. Lets first consider fetching the results as an array

using the fetch_array() function.

Sqry = “SELECT * FROM appointments”;
Sresult = Smysqli->query(Sqry);
while(Srow = Sresult->fetch_array())

{

print_r(Srow);

}

The print_r() function shows the Srow array to examine how the data is stored. Assuming there is a
single entry in the database, the following might be output.

Array ([0] == 1 [1d] == 1 [1] == 2016-08-15 [date] == 2016-08-15 [2] == Meeting [title] == Meeting [3] == Room 401 [details] == Room 401)

Figure 6.8: The Results of fetch_array()

The Srow variable is now an array of the data from the row of the database. Each bit of data is stored
twice in the array, both as an indexed array and as an associative array. Therefore the date for the appointment
could be referenced as either Srow[1] or Srow[‘date’]. Clearly to use the numerical index [1] the developer
needs to remember the order of columns in the database, while using the associative index [‘date’], the index
is taken from the column name. Data can be retrieved from the database by only using the associative array

using fetch_assoc(), as follows.

89

Sqry = “SELECT * FROM appointments”;
Sresult = Smysqli->query(Sqgry);
while(Srow = Sresult->fetch_assoc())

{
print_r(Srow);

}

This time only the associate index array is returned, so the date could be referenced using Srow[‘date’].

Array ([1d] == | [date] == 2016-08-15 [title] == Meeting [details] == Foom 401)

Figure 6.9: The Results of fetch_assoc()

The final way to return data is as an object. When using the fetch_object() function the variable Srow

is returned as an object.

$qry = “SELECT * FROM appointments”;
Sresult = Smysqli->query($ary);
while(Srow = Sresult->fetch_object())

{
print_r(Srow);
}
As the returned data is an object, each element is referenced using the arrow notation, such as Srow-
>date.

stdClass Object ([id] == 1 [date] == 2016-08-15 [title] == Meeting [details] == Room 401)

Figure 6.10: The Results of fetch_object()

6.4.4 Procedural or OO Approach

This section of the chapter has demonstrated that MySQLi has a dual interface, offering both a
procedural and OO approach. Readers may wonder why both approaches are discussed and which approach

Try it yourself!

The last chapter concluded by introducing a calendar, but each time the browser was
closed, all appointments were lost. This chapter has introduced ways that the calendar
can be improved, by storing appointments in a database. A few improvements can be
made — firstly when submitting a new appointment form, PHP can catch the post
variables and INSERT into the database. Secondly when displaying the calendar page, the
database can be queried to return all appointments for that month.

90

is recommended as best. In reality both approaches work in the same way, and from a performance perspective
they are equivalent. The procedural approach is similar to the original MySQL extension before it was replaced
by MySQLi, so experienced developers will often find the procedural approach easier to adapt to. However,
there is a general trend towards more OO style in PHP, so perhaps there is good reason to adopt the OO

approach.
Key Points

e Because PHP is code running on the server, it can be used to read and write data from files stored on

the server and there are several functions to help with that.

There are different modes when opening a file, depending on whether you intend to read, write or
append the file.

e Appropriate permissions should be set to limit access to files stored on the server.

MySQL is a database server that is a key part of the WAMP / LAMP stack.

Phpmyadmin is a useful tool allowing a GUI for managing databases.

Structured Query Language or SQL is a database language used to access, query, insert, update and

delete from databases.

MySQLi is an improved PHP extension allowing an APl for manipulating a MySQL database via PHP.

There are choices between a procedural or object-oriented approach to MySQLi.

Further Resources

1) w3schools has further information on using PHP to manage files, which can be found here:-
https://www.w3schools.com/php/php_file.asp

2) tutorialspoint has a short tutorial on managing files, which can be found here:-
https://www.tutorialspoint.com/php/php_files.htm

3) Athorough guide and function reference for the MySQLi extension can be fund here:-
http://php.net/manual/en/intro.mysqli.php

4) A further MySQLi function reference guide can be found here:-
https://www.w3schools.com/php/php_ref_mysqgli.asp

Assignment

Last chapter produced a simple calendar where an appointment could be displayed. The main
limitations were that when the user left the calendar, the appointment was lost, and only one appointment
could be displayed. Improve the calendar from that chapter. When the user creates their appointment, store
the information in a database, so that when the calendar is displayed the database is queried and all

appointments in the database are then displayed.

91

Chapter 7

Cookies, Sessions & Security

Objectives

Previous chapters have introduced PHP, a scripting language for running code on the server. This also
included code for storing data on the server both in files and databases, which immediately raises security
threats. Little was discussed about how to deal with security threats, so this chapter aims to address this issue.
One aspect of securing parts of the web involves authentication, which is commonly achieved by users entering
their username and password to access certain information. This chapter will discuss creating a login page, and
how cookies and sessions can be used to identify users. After reading it you should;

e Understand that HTTP is a stateless protocol, which means that the server by default doesn’t maintain
the state of each client that makes a request.

e Be able to use cookies to store small amounts of information within the client’s browser, and also
remove those cookies.

e Understand the similarities and differences between cookies and sessions.

e Be able to create a registration and login system to authenticate visitors to your site and to secure
certain pages.

e Understand some of the key security threats such as SQL injections, and how to counter these threats.

Contents

7.1 Cookies

7.2 Sessions

7.3 PHP Login Script

7.4 Online Security Threats

92

The previous chapter introduced how PHP can be used to store data permanently on the server, both
in files and in databases. While the code works, and allows developers to read and write from the server, very
little consideration was given to security. Clearly when allowing a client computer to manipulate files on the
server, there can be security concerns such as SQL injections or brute force attacks, and this chapter will
address some of these issues. Web security is a constantly evolving field as hackers find new ways to exploit
security flaws, and developers adopt new practices to protect their assets. Therefore this chapter isn’t a

complete guide to web security, but will raise some of the issues and resolutions.

Considering the calendar example introduced in previous chapters, clearly only the owner of the
calendar should be able to add or edit appointments, and depending on the purpose of the calendar, perhaps
be the only one to view appointments. The standard way of ensuring that only the right people have access to
certain pages is through authentication, most often requiring the user to input a password. Previously this book
has discussed form validation, and a simple login form could easily be created using an input field of type

‘password’. An issue arises however because Hypertext Transfer Protocol (HTTP) is a stateless protocol.

HTTP is the foundation data communication protocol used throughout the web, crucial for transferring
data between clients and servers. HTTP is a stateless protocol, which means that each request is treated
independently from any other request, in other words the server doesn’t keep track of the state of any client
that makes a request from it. This is a benefit for the server, as makes the role simpler, a conversation doesn’t
need to be remembered and each request is treated individually. Should the client part of a conversation lose
connection, the server doesn’t use unnecessary memory to store information about the absent client.

However, extra data may be needed in each request to authenticate the request.

HTTP is a stateless protocol, which means that each request is treated
independently from any other request, in other words the server doesn’t

keep track of the state of any client that makes a request from it.

This chapter will discuss how this can be resolved as well as introducing some of the security related
issues that developers should be aware of.

7.1 Cookies

Cookies are small pieces of data sent from a website and stored in the users browser on the client
computer. The intention for cookies was to allow stateful information through HTTP requests. For example to
store items the user has in their shopping cart, their name, or also to record their browsing history, such as
which products they have viewed etc. A particularly important type of cookie is an authentication cookie, which
is used to know whether the user is logged in, and whether the server should send a page containing sensitive
information. Because HTTP is a stateless protocol, and doesn’t maintain information about each request, it

needs a way to verify which requests come from authenticated users, and which from simple visitors.

Much like a variable, a cookie consists of a name value pair. The cookie is originally set by the

webserver, and stored on the client computer. The client computer then sends cookie data back to the server

93

with any request, which allows the client machine to identify itself to the server. Cookies can contain data up
to 4,096 bytes in size, and each domain can set at least 50 cookies. There is of course a tradeoff between storing
this information on the client machine, versus storing data on the server. With data stored on the client
machine, the user is able to see what data is being stored — cookies can be seen in the “Resources” tab of
develop tools using a chrome browser. Because cookies have received some negative press due to potential
security threats, some users choose to disable cookies and prevent websites from storing data on their

machine.

A cookie can be set using the PHP setcookie() function, before the opening <html> tag when a page is
sent to the client. The setcookie() function can take several parameters, beginning with the name and value,
and also a time for the cookie to expire. In this example, the cookie expiration is set for one day later by using

a current timestamp, and adding the number of seconds in the next 24 hours.

Sname = “user”;
Svalue = “John”;
setcookie(Sname, Svalue, time() + (60*60*24));

Other optional parameters for the setcookie() function include being able to set the path and domain,
limiting where the cookie is accessible from, specifying that the cookie should only be sent over a secure https
connection, and an HTTPonly parameter which prevents the cookie from being used by JavaScript. Once a
cookie has been set, it is then sent along with any page request to the server within the $_COOKIE array. The
S_COOKIE array is a superglobal array, similar to the S_POST and S_GET arrays introduced previously. The

isset() function can be used to check if a cookie exists within the $_COOKIE array.

if(isset(S_COOKIE[‘user’]))

{
Suser =S_COOKIE[‘user’];

}

Cookies will expire according to the expiry timestamp specified when they are created, which means
they can be destroyed by specifying a timestamp in the past. The timestamp used though depends on the client
machine, so a timestamp a long time in the past might be sensible.

setcookie(“user”, “John”, time() -1);

Cookies offer developers the means to identify which client has made the HTTP request, and so
enables personalized responses; for example having retrieved the user cookie created above, the page could
say “Welcome back John”. Beyond this, a profile could be created for each user and alternative pages delivered
according to their personal preferences. Cookies can also be used to manage sessions, storing whether a user
is logged into a website. As the $_COOKIE array is sent along with each request, cookies can also be used to
track user behavior across a site.

Cookies, however, do present security and privacy concerns. Some users are concerned about the

ability to track their activity using cookies, and will simply disable cookies. Cookies are stored in the browser

94

on a machine, which doesn’t necessarily identify a user, as one user may use multiple browsers, or multiple

users may use the same machine.
7.2 Sessions

Cookies store information about a user on the client’s machine, sessions are similar to cookies, but the
information is stored on the server, with an identifying cookie residing on the client machine. When working
with a PHP application, a user might login, perform tasks and then leave — this is essentially a session —a period
of time doing a task. As already noted though, the HTTP requests do not maintain the state of each request,
using PHP sessions affords another way of tracking multiple requests by a user over a period of time. Data
stored in a session will persist as long as the session continues, unlike data stored in a database which will
remain permanently.

PHP sessions are created by calling the session_start() function, variables can then be stored in the

S_SESSION super global array, which works in a similar way to the $_COOKIE super global array.

<?php
session_start();
S_SESSION[‘name’] = “John”;
echo $_SESSION[‘hame’];

>

This code creates a session variable called name which stores the value “John”. This session variable is
available across any subsequent pages that start the session by calling session_start(). Essentially when a
session is opened a user key is stored as a cookie on the client machine, this cookie is a random string of 32
hexadecimal digits, such as “fcal7f071bbg9bf7f85ca281653499a4”. When another page calls session_start()
the cookies are scanned for an appropriate user key which allows the server to retrieve the appropriate
S_SESSION array.

Session variables can be removed by calling session_unset(), and a session can be completely
destroyed by calling session_destroy(). The php.ini file can be edited to control how long a session will last, but
by default session variables will generally last for 24 minutes. Server side cookies can store large amounts of
data, much more than the limited size of client size cookies. Also with the data being stored on the server it

can’t be edited by the user.
7.3 PHP Login Script

This section will demonstrate using sessions to create a registration and login script, which will allow
pages to be hidden and only accessible to authenticated users. Whilst it may not be completely hacker proof,

it serves to highlight some of the security threats that need to be considered.
7.3.1 Setting up the Database

To begin with a database needs to be created, which can be done using phpmyadmin.

CREATE DATABASE ‘phplogin’;

95

To make the database more secure, we won’t access it using the root admin access, instead create a
new user which only has SELECT, UPDATE and INSERT privileges. The new user will be used to connect to the
database without the ability to DELETE or DROP data. If you did need to delete data using PHP for some reason,
you could create a separate user with delete privilege. This means that if the script was somehow hacked, at
least the hacker wouldn’t be able to delete the data. This can be done using the GUI interface in phpmyadmin,
or by the following SQL statements. In this case the user ‘boss’ is created, with the password ‘Bos$123,

although clearly you may wish to generate a more secure password.

CREATE USER ‘boss’@’localhost’ IDENTIFIED BY ‘Bos$123’;
GRANT SELECT, INSERT, UPDATE ON phplogin.* TO ‘boss’@’localhost’;

The database will contain a table that stores the users information, with their username, email address

and password. The table can be created using phpmyadmin, or with straight SQL.

CREATE TABLE ‘phplogin’.’users’ (
‘id’ INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
‘username’ VARCHAR(30) NOT NULL,
‘email’ VARCHAR(50) NOT NULL,
‘password’ CHAR(128) NOT NULL
) ENGINE = InnoDB;

7.3.2 Connecting to the Database

The next step is to allow PHP to connect to the database, as discussed in the previous chapter. The
database connection script will be separated from each page and just needs to be included when connection
to the database is needed, therefore these files can be stored in an ‘includes’ folder within the project

directory.

<?php
define("HOST", "localhost");
define("USER", "boss");
define("PASSWORD", "Bos$123");
define("DATABASE", "phplogin");

?>

The first file contains the login credentials, which on a live server would ideally be stored outside the
document root so that it couldn’t be accessed by chance via a URL. This file simply defines the login credentials
set up previously and is saved as ‘/includes/db-config.php’. This credentials config file means the username
and password are stored once in a single file, which makes it easier to update when passwords need to be
changed. A second file can be used to create a mysqli object by including the credentials defined in db-config.
This file is called ‘/includes/db-connect.php’.

96

<?php
include_once 'db-config.php';
Smysqli = new mysqli(HOST, USER, PASSWORD, DATABASE);

?>

This db-connect file can then be included wherever database connections are needed, making the

mysqli object available, whenever the database needs to be accessed.
7.3.3 Session Management

As described in section 8.2, the session_start() function needs to be called to initiate a session and
store data, such as login data, within session variables. There are ways, not discussed here, in which the
session_start() function could be made more secure, so it makes sense to move the session function to a
separate file that can be included whenever the session information is needed. The separate file can also
include some session related functions that can be useful for checking if a user has logged in. The following is

saved in the sessions.php file within the ‘includes’ folder.

<?php
session_start();
function logged_in() {
return isset(S_SESSION['username']);
}
function confirm_logged_in() {
if (llogged_in()) {?>
<script type="text/javascript">
window.location = "login.php";
</script>
<?php
}

?>

In future files the sessions.php file can be included to initiate a session. There are two further functions
included in the file. First the “logged_in()” function returns true or false, depending on whether a username
has been set in the $_SESSION array. The second function “confirm_logged_in()” will redirect the browser to

the login page, if the logged_in() function returns false.
7.3.4 Logging In

The login script consists of several pages, but begins with a form for the user to input their username
and password. This is contained in the login.php file.

97

<?php include_once('includes/session.php');?>
<html>
<head>
<script type="text/JavaScript" src="js/sha512.js"></script>
<script type="text/JavaScript" src="js/functions.js"></script>
</head>
<?php if (logged_in()) { ?>
<script type="text/javascript">
window.location = "member.php";
</script>
<?php }?>
<body>
<h4>Log In</h4>
<form action="includes/processlogin.php" method="post">
Username: <input name="username" type="text" autofocus>

Password: <input name="password" type="password" id="password" value="">

<input type="submit" name="login" value="Login" onclick="formhash(this.form);">
</form>
Not registered? Register Here
</body>
</html>

?>

Obviously this form could be styled using CSS to make it more attractive, and also JavaScript should be
used to validate the user’s entry. As these tasks have been discussed previously, they are removed from this
example, but there remains a few interesting complications. Firstly PHP is used to check if the user is already

logged in —if they are they are redirected to a page called “member.php”.

Two JavaScript files are also included, both contained in a “js” folder. The first is “sha512.js”, which
can be downloaded from http://pajhome.org.uk/crypt/md5/sha512.html. SHA stands for “Secure Hash
Algorithm”, and is used in this case to create a hash value for the password, so that the password isn’t sent
from the client computer to the server in plain text. The second JavaScript file, called “functions.js” contains a
function to use the hash function to encrypt the password before it is sent through the web. First the
getElementByID() function is aliased to make life easier referring to it instead by S. Secondly a formhash()
function is defined, notice that this function is called by the “onclick” event for the forms submit button. This
function will become clearer in later chapters after studying jQuery. When the form is submitted the function
is called and creates a new input on the form, which is hidden. This field, called “p” is then given the hashed
valued of the password (after calling hex_sha512). The password field is then cleared so the password will not
be transmitted in plain text. This function can be improved to validate the entries for all the user inputs.

98

function S(id)
{
return document.getElementByld(id)
}
function formhash(form) {
var p = document.createElement("input");
form.appendChild(p);
p.name ="p";
p.type = "hidden";
var password = $('password').value;
p.value = hex_sha512(password);

S('password').value ="";

The action parameter for the login page transfers to a “processlogin.php” file within the includes

directory.

<?php
include_once 'db_connect.php';
include_once 'functions.php';
include_once 'session.php';
if (isset(S_POST['username'], S_POST['p'])) {
Susername = S_POST['username'];
Spassword =S_POST['p'];
if (login(Susername, Spassword, Smysqli) == true) {
header('Location: ../member.php');
}else {
header('Location: ../login.php');
}
} else {
echo 'Oops - Please Try Again!’;
}

?>

If no values for username and password have been sent, then an error message is displayed, otherwise
the user is redirected, depending on the result of a function call to the function login(). If the function returns
true, the user is redirected to the member.php page (which could be any page containing secured information),
while if it returns false, the user is redirected to the login page. The login() function is contained within a php

functions page, also in the includes directory.

99

<?php
function login(Susername, Spassword, Smysqli) {
if(Sstmt = Smysqli->prepare("SELECT id, username, password FROM users WHERE username = ? LIMIT 1")) {
Sstmt->bind_param('s', Susername);
Sstmt->execute();
Sstmt->store_result();
Sstmt->bind_result(Suser_id, Susername, Sdb_password);
Sstmt->fetch();
if(Sstmt->num_rows == 1) {
if (Spassword == Sdb_password) {
Suser_id = preg_replace("/[*0-9]+/", "", Suser_id);
S_SESSION['user_id'] = Suser_id;
Susername = preg_replace("/[*a-zA-Z0-9_\-]+/", "", Susername);
S_SESSION['username'] = Susername;
S_SESSION['login_string'] = hash('sha512', Sdb_password);
return true;
}else {
return false;
}
}else {
return false;
}
}
}

?>

The login function uses prepared mysqli statements, rather than the statements we have introduced
previously. With prepared statements the query and the data are sent to the server separately which can assist
to protect against an SQL injection. First the query is sent, (or prepared), before the data follows using the
bind_param() function, in this case the data is the username, which is a string (or ‘s’). Assuming that the
database contains the username, the query returns the encrypted version of the password as stored on the
server. This is then compared with the password given by the user. If the passwords match, session variables
are created and the function confirms the user has logged in.

A common attack for this kind of set up would be a brute force attack, where the user could randomly
guess passwords repeatedly until the user gets lucky and guesses the correct password. There are several ways
to combat brute force attacks, for example locking a username after a specified number of guesses over a
certain time period. Currently the best way to manage brute force attacks is to use CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans Apart). Using existing CAPTCHA solutions will
ensure that a human is attempting to guess the password each time.

100

7.3.5 Registration

The login script assumes that there are registered users in the database who’s passwords can be
compared. Therefore to make a login system, a registration page is needed.

<html>
<head>
<script type="text/JavaScript" src="js/sha512.js"></script>
<script type="text/JavaScript" src="js/functions.js"></script>
</head>
<body>
<h4>Register</h4>
<form action="includes/processreg.php" method="post">

Username: <input type="text" name="username">

Email: <input type="text" name="email">

Password: <input type="password" name="password" id="password">

Confirm password: <input type="password" name="pass2" id="pass2">

<input type="submit" value="Register" onclick="reghash(this.form);" />
</form>
<p>Go back to login.</p>
</body>
</html>

The registration page here consists of a relatively straightforward form asking for the users details. As
previously the “sha512.js” function is used to encrypt the password inputted. The onclick event, when the user
registers calls another function “reghash()” which is contained in the “functions.js” file. This function is similar
to the hash function used in the login form previously, with the main objective being to hash the password to
prevent the password being transmitted in plain text. This function should be improved by thoroughly

validating all the inputs the user submits.

function reghash(form) {
var p = document.createElement("input");
form.appendChild(p);
p.name ="p";
p.type = "hidden";
var password = $('password').value;
p.value = hex_sha512(password);

S('password').value ="";

S('pass2').value="";

The action parameter for the register form is to post the values to the “processreg.php” page. This
page is responsible for finally validating the user’s input before adding the data into the database.

101

<?php

include_once 'db_connect.php’;

Susername = filter_input(INPUT_POST, 'username’, FILTER_SANITIZE_STRING);

Semail = filter_input(INPUT_POST, 'email’, FILTER_SANITIZE_EMAIL);

Spassword = filter_input(INPUT_POST, 'p', FILTER_SANITIZE_STRING);

if (Sinsert_stmt = Smysgli->prepare("INSERT INTO users (username, email, password) VALUES (?, ?, ?)")) {
Sinsert_stmt->bind_param('sss', Susername, Semail, Spassword);
Sinsert_stmt->execute();
header('Location: ../login.php');

}

else

{
header('Location: ./register.php');

?>

Once again, prepared statements are used to separate the data from the query, and once again this
example is simplified to remove the validation of user inputs. This validation is particularly important, and the
validation should be handled both on the client machine using JavaScript and on the server using PHP.

7.3.5 Secured Pages

Once users are logged in they should be able to access secured pages, such as the “member.php” page
referenced previously. Any page that should be secured needs to check if the session variables have been set
before displaying the page, and if not, reroute the user to a login page. The login_check() function defined

earlier can be used.

<?php
include_once 'includes/db_connect.php’;
include_once 'includes/functions.php’;
include_once 'includes/session.php';
>
<?php
if (login_check(Smysqli) == true) : ?>
<p>Welcome <?php echo S_SESSION['username']; ?></p>
Logout Here
<?php else : ?>
<p>You are not authorized to access this page. Please login.</p>
<?php endif; ?>

102

7.3.6 Logging Out

The final step to a login system is to allow users to logout, which involves removing all the session

variables and finally destroying the session.

<?php

include_once 'includes/functions.php';

include_once 'includes/session.php';

S_SESSION = array();

Sparams = session_get_cookie_params();

setcookie(session_name(), ", time() - 42000, Sparams["path"], Sparams["domain"], Sparams["secure"],
Sparams["httponly"]);

session_destroy();

header('Location: login.php');

?>

7.4 Online Security Threats

The login script described in this chapter is not flawless, but it does attempt to address some of the

threats that web developers need to be aware of.
7.4.1 5QL Injections

An SQL injection is a hacking technique where SQL statements are ‘injected’ into some data entry field.
These statements could be used to bypass security and access data that shouldn’t be accessed, or delete data,
amongst other things. Consider the following query being prepared in PHP where the Susername parameter

will come from a text box that the user will fill in.

<?php
Ssql = “SELECT * FROM users WHERE username = . Susername . “’;”;

?>

Oninitial inspection the statement makes logical sense, with the developer expecting the user to input
their name and the query to return data about that particular user. Now consider if the user inputs the

following;
“OR ‘1’="1’; DROP TABLE users;
Once PHP parses the input, the full SQL statement may look like this;
SELECT * FROM users WHERE username = “ OR ‘1’="1"; DROP TABLE users;

The first query in the statement could potentially return all the data in the users table, while the
second query could potentially delete all the data in the table. As illustrated in the code in this chapter, one
way of mitigating against SQL injections is to use prepared statements, where user input isn’t embedded

directly into a statement, instead it is bound to a placeholder, and only accepted if it is of the correct type. An

103

alternative, but more error prone, approach is to “escape” a SQL statement before sending it by using the PHP

function mysqli_real_escape_string().
7.4.2 Session Hijacking

Session hijacking occurs when a hacker manages to steal the session token, perhaps by sniffing the
data being sent over a network, or by tricking a user into following a link to a page crafted to use JavaScript to
send the token to the attacker, or even by guessing a predictable session token. Once an attacker has a session
ID, they are able to pretend to the server that they are the legitimate user. A classic example of this is called
the “maninthe middle” attack, where an attacker sets up their machine inline between the user and the server,
able to intercept and further traffic that passes between the two. A further example is Cross-site scripting,
where the attackers tricks the user’s computer into running particular code by making it appear to come from

a trusted server.

Ways to avoid session hijacking include making sure that all data traffic is encrypted, perhaps using
SSL. Using a long, random string as the session key can make it harder to guess, while some services change
the value of the session cookie each time a request is made, reducing the time frame for an attack.

Key Points

e HTTP is a stateless protocol, so the server doesn’t store the state of each client that connects to it.

e Cookies can be used to store data in the user’s browser so that the server can identify which browser
has made the request. However, as they are stored on the client machine, the server has limited
control over them.

e Asession stores data on the server, with an identifying cookie on the client machine.

e Sessions can be used to secure certain webpages, meaning a user has to login to access it.

Passwords should be secured before being sent over the web.

e SQL injections and session hijacking are just 2 security threats that users need to be protected from.
Further Resources

1) The w3schools introduction to cookies can be found here:-
https://www.w3schools.com/php/php_cookies.asp

2) Further information about sessions can be found in the php.net documentation:-
http://php.net/manual/en/book.session.php

3) An alternative guide to creating a secure login script can be found here:-

https://www.wikihow.com/Create-a-Secure-Login-Script-in-PHP-and-MySQL
With the source files available here:-
https://github.com/peredurabefrog/phpSecurelLogin
Assignment

The assignment in previous chapters has been to create a calendar, but thus far the calendar has been
publically visible. Write a registration and login script which allows multiple users to keep their appointments

securely.

104

Part 3

Client-Side Scripting with JavaScript and JQuery

Chapter 8 Chapter 10

Introducing JavaScript JQuery and the DOM

Chapter 9 Chapter 11

Introducing JQuery Asynchronous JavaScript and JQuery Ul

Part three focuses on the JavaScript programming language, which is often considered one of
the three core web technologies, alongside HTML and CSS. Whilst the previous part focused on code
running on a server, this part focuses on code running on the client machine, beginning with raw
JavaScript. JQuery is a library written in JavaScript, which facilitates some cool features such as handling
browser events, and enabling some attractive effects. JQuery also helps manipulate the DOM (or
Document Object Model). This part also discusses Asynchronous JavaScript allowing parts of the

webpage to be loaded independently from other parts.

105

Chapter 8

Introducing JavaScript

Objectives

This chapter introduces JavaScript, one of the key programming languages used on websites.
JavaScript is the main client side scripting language used when running code in all modern browsers. This
chapter introduces basic programming concepts and how they are implemented in JavaScript. Readers who
have experience using other programming languages should find it easy to transfer their existing coding skills
to JavaScript. After reading this chapter you should:

e Know how to run JavaScript on a webpage.

e Be able to use core programming fundamentals in JavaScript, including Variables, Operators, Control
Statements, Arrays and Functions.

e Understand how the getElementByld() function can be used to access and change elements on the
page.

e Beintroduced to the Document Object Model or DOM.

e Understand how forms can be used to move data from one page to another and be able to use
JavaScript to validate the inputs to a form.

It is worth mentioning at this point that this chapter is intended as an introduction to JavaScript, later
chapters will explore the JQuery library which is built using JavaScript.

Contents

8.1 Variables

8.2 Operators

8.3 Control Statements

8.4 Arrays

8.5 Functions

8.6 getElementByld()

8.7 Form Validation Example

106

JavaScript is one of the most important web programming languages, essential for all web developers
to understand. While HTML defines the content and structure of a webpage, and CSS is used to define the
layout and design of a page, JavaScript is used to bring the page to life. JavaScript is a client side scripting
language which runs code within the browser, and has access to all elements in the document. JavaScript is a
powerful tool for webmasters, and there are many frameworks and libraries that can be used to make
programming in JavaScript easier. In later chapters we will investigate JQuery, a JavaScript library, but the
purpose of this chapter is to introduce the basics of JavaScript. Amongst other purposes JavaScript can be used
to move elements around on a page, update information on the page, or respond to user interactions such as

when the user clicks on an element or rolls over it.

Let’s dive straight in with a simple “Hello World” example;

<script type="text/javascript”>
document.write(“Hello World”)

</script>

JavaScript can be written within script tags that have the type “text/javascript”. In this example, the
“write” method is called to write the string “Hello World” onto the document, or page. Programmers with
experience in other programming languages may recognize aspects of this code, such as the dot notation, and
the brackets. Without experience in other programming languages, pasting the above inside the body tags will
simply make “Hello World” appear on the page. JavaScript can be placed within either the head or body of a
webpage, or included in a separate file. In many cases it is a good idea to place scripts at the end of the body
section, so they are loaded after all the elements on the page, as this can speed up page load times.
Alternatively, it is a good idea to separate JavaScript into a different file, in much the same way a css file
separates the style from the content, a separate JavaScript file can separate the behavior of the page. In this
case placing the following in the head of a page would load the script.js file from within the js folder.

<script src="js/script.js”></script>

Within the script tags code can be written to allow the page to react and change in different ways
depending on how the user interacts with it. The user’s computer downloads the JavaScript code and then
executes in on their machine, regardless of where the server is located. This means the page can then react in
different ways to events such as when the user clicks on an element on the page, or any other events within
the client’s browser. It is important to remember that JavaScript runs on the client’s machine, so if we consider
the next example, which will display the current date, the date displayed will depend on where the client’s
machine is in the world, and so will display a different time and date for users in the USA, Europe, or Thailand.

107

<script type="text/javascript”>
document.write(Date())
</script>

In this next section we look at some programming fundamentals in JavaScript. For those who’ve coded
before in other programming languages, we examine differences in syntax and style, while for anyone new to
programming this is a crash course in coding logic.

8.1 Variables

Variables are used to store data that can be used in the code. In JavaScript variables contain a value,
and have a name that is used to reference them. A variable can contain any type of data including integers,
floating point numbers or strings of characters. Variables can also refer to arrays or objects. As JavaScript is a
weakly typed programming language, the type of data stored in the variable doesn’t need to be specified. A
name for the variable does need to be declared though. Variable names can be any alpha-numeric
combination, and can include the underscore character, in other words; a-z, 0-9 and _. A variable name
however may not begin with a number. Variable names are case sensitive, so using capital letters or small
letters does make a difference. Choosing an appropriate name for a variable makes a programmers life easier.
Variables in JavaScript are declared using the “var” keyword, and can have a value assigned to them using the

“u_n

=" assignment operator.

<script type="text/javascript”>
vara=>5;
var b = 6;
varc=a+b;
console.log(c);
</script>

This example created 3 variables, a, b and c, assigning the first two the values 5 and 6 respectively,
before assigning c as the sum of the first two. Finally the result is logged within the console. Logging values in
the console is a very useful debugging tool, as often when JavaScript code doesn’t work, no error is generated,
just nothing happens. There are a few more interesting points to note regarding this example. Firstly notice
that each line ends with a semi-colon — a semi colon is used to separate statements, but in JavaScript a new
line can be used instead. The semi-colon is necessary if you want to place multiple statements on the same
line. The code will also appear to work in the same way if the variables are not declared explicitly using the
‘var’ keyword. In other words, the previous code example will work the same as the following one.

<script type="text/javascript”>

a=5
b=6
c=a+b

console.log(c)

</script>

108

While both versions appear to work in the same way, there is a difference, in that the “var” keyword
declares the variable within a set scope, perhaps within the function it is declared. Without the “var” keyword
the variable is essentially global, and may encounter another variable with the same name. Initially this is

unlikely to cause problems, but may do in larger, more complicated projects.

Quick Tip

The console is a very important tool for developers using JavaScript. Outputting
values to the console is very useful for debugging JavaScript code. The console can
be accessed through the developer tools in most browsers.

Strings are a type of JavaScript variable used to store text — a sequence of alphanumeric characters or
symbols. The text in a string is surrounded by quotes, either single (‘) or double (“) quotes. One string can be
assigned to another string using the assignment operator (=). Strings can also be concatenated using the

addition operator (+) as the following example demonstrates.

<script type="“text/javascript”>
var firstname = “John”;
var surname = “Smith”;
var fullname = firstname + surname;
var name = fullname;
console.log(fullname);

</script>

As already mentioned a string is surrounded by quotes, either single (‘) or double (“). Sometimes the
string needs to contain a quote, and this can be achieved in a couple of ways. Firstly if the string needs to
contain a single quote it is simple enough to surround it with double quotes — so long as the opening and closing
quotes match there is little difference between using single or double quotes. Alternatively the escape
character (\) can be used as shown in the next example. While there is little difference between single and
double quotes, there may be advantages to using double quotes, particularly when passing data as JSON
(JavaScript Object Notation). Being consistent is the most important part though.

<script type="text/javascript”>
var strl = “I’'m John”;
var str2 = ‘I\’m John’;

</script>

109

The escape character can also be used to insert a new line into a string, by using “\n”.

Quick Tip

Comments! As your code gets longer it because more important to add comments.
Comments are ignored by the computer, but are there for you and other developers looking
at your code, to make it easier to remember how something works. A single line comment
can be added using “//”, and over multiple lines using “/*.....¥/".

// Single Line comment

/* Comment over

multiple lines */

8.2 Operators

We have already encountered some operators, but it is useful to introduce all the types of operator

available in JavaScript. Firstly the arithmetic operators.

Arithmetic Operators Purpose Notes
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus Returns the remainder from a
division
++ Increment (add one to the value) Unary operator
-- Decrement (minus one from the value) Unary operator

Table 8.1: Arithmetic Operators in JavaScript

Note that the increment and decrement operators are unary operators, which means they operate on
one variable, whereas the other arithmetic operators operate on two values. Secondly the assignment

operators. In each case the value from the expression to the right is assigned to the variable on the left.

Assignment Operators Example Equivalent
= a=b
+= a+=b a=a+b
-= a-= a=a-b
= a=b a=a*b

= a/=b a=a/b
%= a%=b a=a%b

Table 8.2: Assignment Operators in JavaScript

110

JavaScript also has a selection of logical, or Boolean operators.

Logical Operators Purpose

== Equal to

I= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to

=== Equal to, both in terms of value and type

I== Not equal to, both in terms of value and type
&& AND

[OR
! Not

Table 8.3: Logical Operators in JavaScript
8.3 Control Statements

JavaScript, like other programming languages has a selection of control statements to help with both
branching and looping. Branching enables your code to do different things at different times, rather than
always doing the same. Looping, or iteration, simplifies code by allowing the same instruction to be performed
multiple times. The simplest form of branching is the “if” statement, which combines with the “else if” and
“else” statements as in the following example. The if statement begins with a Boolean expression which will
result in either “true” or “false”, allowing different blocks of code to be executed in each case.

<script type="text/javascript”>
if (a > 100)
{
document.write(“a is greater than 100”);
}
else if (a<100)
{

document.write(“a is less than 100”);

}

else

{

document.write(“a is 100”);

}

</script>

If the block of code is short, i.e. a single line, then some programmers prefer to use the ternary
operator (?) instead of the if statement. The ternary operator also begins with the Boolean expression, but
then separates the code for “true” and “false” using a colon, “:”. The main benefit of the ternary operator is
that the resulting code is concise, needing a single line of code where the alternative would run over several

lines.

111

<script type="text/javascript”>
document.write(a<5 ? “ais less than 5” : “a is not less than 5”);

</script>

Another alternative that allows the code to branch is using a “switch” statement. While an if
statement, and the ternary operator work using a Boolean expression allowing 2 alternatives, the switch
statement works using the value of a variable. This allows more than 2 alternatives, in much the same way that
nested if statements, or repeated “else if” statements work. The switch statement can be useful for controlling
menus. In the following example, the resulting output depends on the value of the variable “choice”, with code
supplied for 2 alternative cases and a default case.

<script type="“text/javascript”>
switch(choice)
{
case 1:
document.write(“1 Selected”);
break;
case 2:
document.write(“2 Selected”);
break;
case default:
document.write(“None Selected”);
break;
}

</script>

Another collection of control statements support iteration, where the same code is repeated multiple
times. If the programmer knows how many times it should be repeated, then a “For Loop” is an appropriate
choice. A for loop begins with 3 statements, an initialization, a Boolean test, and an update action. The
initialization is used to create a test variable, and then each time the code is looped, the Boolean test decides

whether to repeat the loop again, and the update action is executed.
if(initialization; Boolean test; update action)

In the following example, the block of code will execute 5 times, each time displaying the 5 times table.

Note how the + operator is used to concatenate the string.

<script type="text/javascript”>
for(count = 1; count <=5; count++)

{

document.write(count + “ times 5 is “ + count*5 + “
";

}

</script>

112

Very often it isn’t known how many times some code should iterate, it should simply continue while
some condition is true. In this case a “while” loop can be used, which will loop until a Boolean expression is
true. Care should be taken to avoid infinite loops where the condition is never satisfied.

<script type="text/javascript”>
var count = 0;
while (count < 5)
{
document.write(count + “ times 5 is “ + count*5 + “
";
count++;

}

</script>

There are two types of while loop. The example above is the standard while loop, where the Boolean
expression is tested before the code is executed. This means that it is possible that the code never runs if the
condition is already satisfied. The alternative “Do...While” loop, demonstrated below, will execute at least once

as the Boolean expression is tested at the end of the block of code.

<script type="text/javascript”>
var count = 0;
do
{
document.write(count + “ times 5 is “ + count*5 + “
";
count++;
} while (count < 5)

</script>

8.4 Arrays

An array is a special kind of variable, which can store more than one value. Grouping related data into
an array can make managing data complexity much simpler. Consider a scenario where you needed to store
grade information for 3 students; here we could simply create 3 variables, perhaps called student1, student2
and student3. It would be quite straightforward to assign a value to each of these variables, and so some basic
processing of these 3 values — for example, finding the average grade, the top and bottom grade, etc. However,
consider a new subject where there could be 300 students, or more! Managing 300 variables is much more
complicated, and this is where an array becomes useful. In this example a simple array is created to store 3

students names.

<script type="text/javascript”>
var students = [“John”, “Peter”, “Mark”];
document.write(students[0]);

</script>

113

The square bracket syntax indicates that students is an array variable. In this case each student has an
index number, and by default JavaScript begins indexing at 0, making that the index for John, while Peter and
Mark are index 2 and 3 respectively. The second line of code then refers to the data stored in index position O,
and so writes the string “John” onto the document. Combining an array with a “For Loop” means it is very easy
to go through each element in an array and perform some task on it, such as identifying the top score, as

demonstrated in the following example.

<script type="text/javascript”>
var grades = [50, 80, 70];
var topscore = 0;

for(var i=0; i<3; i++)

{
if(grades[i]>topscore)
{
topscore = grades][i];
}
}

document.write(topscore);
</script>

An array can store any type of data, and can have more than 1 dimension. The following example
creates a two-dimensional array to link a student’s name with their grade. This time to refer to elements in

the array two indexes are needed one for each dimension.

<script type="text/javascript”>
var students = [["John", 50], ["Peter", 80], ["Mark", 70]];
for(var i=0; i<3; i++)
{

document.write(students[i][0] + " got " + students[i][1] + "
");

}

</script>

JavaScript also supports associative arrays, where the index doesn’t need to be a number. The
following example creates an array of 3 countries, where the index is the 2 character country code, and the

value is the name of the country. The example also demonstrates another way of using a for loop with arrays.

<script type="text/javascript”>
countries = {"uk": "United Kingdom", "th": "Thailand", "us": "United States"}
for (country in countries)
document.write(country + " =" + countries[country] + "
")

</script>

114

In several examples we have called the write method (or function), which is a member of the
document. The document also contains a links array, which is an array of all the links in the document, indexed
starting from O, in the order those links appear on the page. We could use this array to refer to the address

that the first link on the page is linking to as follows;
document.links[0].href;

Clearly we may not know how many links appear on the page, just as we may not know how many
elements are in any array. Each array also contains a member called “length”, which stores the size of the array,

so the number of links on a page could be checked as follows;
var numlinks = document.links.length;

This may become clearer after further discussions about functions and the Document Object Model.
8.5 Functions

As you write more code, it becomes more complex and harder to manage and one important way of
organizing code is to use functions. Indeed, one of the keys to becoming a good programmer is finding the right
ways to break a large problem down into smaller, more manageable ones. Writing functions means that you
can reuse code — writing code once and then using it whenever needed, with different inputs producing
different results. JavaScript also comes with many existing functions which can be used to make coding a lot
simpler, as we will explore in much more detail later in the book when we investigate the JQuery library. We
have already seen the write() method, or function, which we have used to display something onto the

document. First, let’s investigate how to define functions in javascript, which has the following syntax.

function name(parameter list)
{

//code
}

An example of a simple function that calculates the average of 3 numbers is given below. The function
keyword is used to declare that it is a function, followed by the name of the function, in this case “average”.
The parameters are specified inside normal brackets, named n1, n2 and n3. The function returns the result of
a small calculation. A function is then called by referring to the name and adding arguments for each

parameter.

<script type="text/javascript”>
function average(n1, n2, n3)
{
return (n1+n2+n3)/3;
}
document.write(average(5,6,7));
</script>

115

Parameters in JavaScript are ‘call by value’ parameters, meaning that if variables are sent as the
parameters to a function, a copy of the variable is made for use in the function. This means that if a function
changes the value of a parameter, the original variable is not affected. As seen previously with variables, the
type of data stored in a parameter isn’t specified, and JavaScript doesn’t check what type of data is being sent,
nor does it check the number of parameters that are sent in a function call. The previous example declared a
function which expects 3 parameters, but the function can still be called with more or less parameters. If less

parameters are sent than expected by the declaration, missing parameters are set to undefined.

Each function also contains an arguments object, which has an array of the parameters sent to the
function. This allows the function to access all parameters used when the function is called, including when
more parameters are sent that expected in the declaration. The previous average function could therefore be
rewritten as below, without specifying the number of parameters. This function can then be used for any

number of parameters.

<script type="text/javascript”>
function average()
{
var total = 0;
for(index in arguments)

{

total += arguments[index];

}

return total / arguments.length;

}
document.write(average(5,6,7,8));
</script>

As well as length, arrays have several methods, or functions that can called. The following table lists

just some of the functions.

Function Name Purpose

push() Add an element to the end of an array.
pop() Remove the last element from the array.
reverse() Reverses the order of the array.

sort() Sorts the array.

Table 8.4: Array Functions in JavaScript
8.6 getElementByld()

So far this chapter has presented some basic programming fundamentals in JavaScript, but one of the
key capabilities of JavaScript is the ability to interact with a webpage, even after it has loaded. Later chapters
will discuss the Document Object Model, or DOM, where the page, or document, is considered as an object,
comprised of other objects, indeed a tree of objects or elements. We have seen how the root element would

be the html tag, and inside that tag are other elements including the head and the body tags. JavaScript can

116

change the way a page looks by adding, removing or editing elements within the DOM. Manipulating the DOM
becomes an important function of JavaScript, and later chapters will investigate libraries that help with DOM
manipulation. For now we will consider accessing specific elements on the page, and to assist with this,

JavaScript comes with a very useful function; getElementByld().

getElementByID() allows us to manipulate, or get data from any element on the page, by specifying an
ID parameter. A variable can then be easily created referencing any element on the page;

var el = document.getElementByld(“test”);

Once an element has been located, data about that element can be read into the code, or changed by
the code. The data can include CSS information, parameters of the tag or text / HTML that appears within the
tag. In the following example, a paragraph tag is created with the id “intro”. Although this paragraph has no
initial styling, when the JavaScript runs, it locates the element with the “intro” id, and changes the color to be

blue.

<p id="intro">Hello World</p>

<script type="text/javascript">
var el = document.getElementByld("intro");
el.style.color = "blue";

</script>

The getElementByld() function is so useful thatin many cases it is aliased, and replaced with the symbol
“S”. As the function is used to frequently, it makes code simpler to use the alias, rather than the full function
name. A simple function can be used to alias getElementByld(), and similar functions are part of libraries such

as jQuery.

<script type="text/javascript">
function $(id)
{

return document.getElementByld(id)

}

</script>

Having aliased the getElementByld() function, it can simply be referred to as $, making a much simpler

version of the previous example.

<p id="intro">Hello World</p>
<script type="text/javascript">

S("intro").style.color = "blue";
</script>

In addition to changing css properties, the innerHTML property can be used to either return or change
the content of an html tag, so for example the following code would change the text in the element with id

intro to say Goodbye instead.

117

<p id="intro">Hello World</p>
<script type="text/javascript">

S("intro").innerHTML = "Goodbye";
</script>

In each of these examples the code is run immediately when the page is loaded, so the user wouldn’t
notice that the text was originally black, or originally said “Hello World”. In the coming example, we’ll
investigate running some code when the user interacts with the page by clicking on a button.

8.7 Form Validation Example

HTML’s form tags can be used to create a form to get input from a user, and make the page more
interactive. We will see later how the data inputted can be sent to the server, or another page. Generally a
form will contain a submit button which can be clicked on by the user creating some kind of action. In this
chapter we will look at how JavaScript can be used to validate that the form has been filled in correctly before
it is submitted. Firstly we will create a simple form which just contains a single field for the user to input their

name.

<form name="register" action="welcome.htm" onsubmit="return validate()" method="post">
Username: <input type="text" name="username">

<input type="submit" value="Go!">

</form>

In this example, the form has 4 parameters. Firstly it has a name, which is needed so we can refer to
it later. Secondly it has an action, which specifies a page to open once the form has been correctly filled in.
Third there is the onsubmit parameter which makes a function call to a validate function, we shall shortly write
this function in JavaScript. Finally the method specifies the way the action should be completed — we shall
discuss this further later on. The form itself consists of an input text box and a submit button, so would look

like this when opened in the browser.

Username:
Gol

Figure 8.1: Simple Form for JavaScript Validation

Currently if you click on the “Go!” button, the browser will attempt to open a page called
“welcome.htm”, which hasn’t yet been created, so will cause an error. Before we create a welcome page, first
we want to validate that the form has been filled in correctly, or in other words, check that the username field
isn’t blank. To do this we can write the validate() function which is called when the user clicks on the submit
button.

118

<script type="text/javascript">
function validate() {
var name = document.forms["register"]["username"].value;
if (name.length < 3) {
alert("Username must have at least 3 characters");
return false;

}

</script>

Here the function creates a variable and assigns it the value from the username field. There is then a
simple if statement to check if the username has at least 3 characters. If the username is less than 3 characters
in length, an alert, or dialog box, is created and then the form is rejected by returning false. This example can
be extended by adding more form elements, for example some radio buttons for the user to select their

gender.

<form name="register" action="welcome.htm" onsubmit="return validate()" method="post">
Username: <input type="text" name="username">

Gender:

<input type="radio" name="gender" value="male" /> Male
<input type="radio" name="gender" value="female" /> Female

<input type="submit" value="Go!">

</form>

The input type for radio buttons is radio, and this will give the user the choice of male or female. The
validate function can then be extended with a further if statement to make sure the user fills selects their

gender, as follows.

var gender = document.forms["register"]["gender"].value;
if (gender="")
{

alert("You must select your gender");

return false;

As this is a registration form, we may expect the user to select a password, fortunately the input tag

has a type called “password”, which will hide the users input.

Password:<input type="password" name="pass1" />

Re-enter Password:<input type="password" name="pass2" />

By adding this to the form, the user is asked to input their password twice. Further code can then be
added to the validate function, to make sure that the password satisfies various conditions, for example
checking that the two are the same, and have at least 8 characters.

119

var passl = document.forms["register"]["pass1"].value;
var pass2 = document.forms["register"]["pass2"].value;
if(passl!=pass2)
{
alert("Passwords must match!");
return false;
}
if(passl.length<8)
{
alert("Passwords must have 8 characters");
return false;

}
Try it yourself!

There are several ways that this example can be developed;
* Make the form look good with CSS!
* Indicate required fields with a “*”, that disappears when it is filled out!
* Ask for date of birth using a calendar!
* Separating the JavaScript into a separate .js file!

Dive in and give it a go!

Key Points

e JavaScript is an important scripting language used to bring a page to life.

e JavaScript runs on the client machine, in the browser.

e JavaScript can be included in the header or body of a page, or in a separate .js file.

e The browser console is an essential tool for debugging JavaScript code.

e JavaScript is weakly (loosely) typed, so variables can store any kind of data.

e Control statements are used to manage the flow of a program, enabling branching and iteration.

e Arrays are used to store a collection of data.

e Functions are used to break your code down into manageable pieces.

e getElementByld() is an important function which allows JavaScript to access and manipulate elements
on in the document.

e HTML Forms can be used to transfer data from one page to another.

120

Further Resources

1) W3Schools has a JavaScript tutorial with plenty of examples and exercises to practice. There tutorial

can be found here:-

https://www.w3schools.com/js/

2) You can try JavaScript examples out at javascript.com:-

https://www.javascript.com/

3) Codecademy has a free introductory JavaScript course, or a paid intensive course which can be found

here:-

Assignment

https://www.codecademy.com/learn/learn-javascript

This chapter introduced a basic form validation script, it’s your job to extend it! In Chapter 4

we created a simple form that could be validated by PHP. A better user experience is created if the input data

is validated by JavaScript before sending it to the server. Create a form to register for a website. Your script

should validate the following inputs in the same way as done in PHP;

1)

2)
3)
4)

5)
6)

Forename — Must not be blank, must not contain spaces, and must have at least 3 alphabet
characters

Surname — Same rules as for Forename

Username — At least 5 characters and can include numbers, _and —

Password — Must be at least 8 characters, containing both upper and lower case letters,
numbers and symbols.

Age — The age must be between 18 and 110

Email — Must be of the form abc@def.ghi

Enhance your form to make sure the user re-inputs their password the same twice and hide the input

from the view. Make your form look good with css — you can add a

“uxn

next to required fields, that disappears

when correct input has been put in. Figure out how to input the birthdate using a drop down calendar. Save

your functions in a separate .js file.

121

Chapter 9

Introducing JQuery

Objectives

In this chapter we return to writing code to run in the browser, rather than on the server. JQuery is a
powerful JavaScript library, which makes writing JavaScript much easier, allowing developers to create rich
interactions for page visitors. JQuery allows the page to respond to the users actions on the page by handling
events such as a mouse click, it also allows some interesting animations as elements on the page can be
changed. After reading this chapter, you should be able:-

e To use JQuery functions on your webpages.

e To use selectors to find elements within the webpage document.

e To handle mouse, keyboard, form and browser events.

e To change a webpage with animation effects such as fade and slide.

e To dynamically change the css of any element on the page.

e To chain animations after each other, or use callback functions to call another function once an

animation is completed.

Contents

9.1 Handling Events with JQuery
9.2 JQuery Effects

122

JQuery is a JavaScript library, designed to make writing JavaScript simpler and so it is useful for
managing inputs and interactions with a page visitor, changing the way a page appears and interacting with
the server. Whilst there are alternative JavaScript libraries, JQuery is the most popular. JQuery makes many
aspects of using JavaScript simpler, including traversing and manipulating the HTML document (DOM),
handling events and animations, and managing AJAX, by creating a simpler API (Application Programming

Interface) for developers to use.

JQuery is a JavaScript library, designed to make writing JavaScript
simpler, useful for traversing and manipulating the HTML document
(DOM), handling events and animations and managing AJAX by creating

a simpler API for developers to use.

Because JQuery is simply a JavaScript library, it is contained within a .js file. This file can be

downloaded from jQuery.com, and then included in the head of any html document;

<head>
<script src="js/jquery-3.1.0.min.js"></script>
</head>

This allows you to host the jQuery library on your server, or on your local machine, which is particularly
useful for developing perhaps when you are disconnected from the web. An alternative though is to use one
of the versions already hosted on a CDN (Content Distribution Network), perhaps the version hosted by google.

In this case just add a link to Google’s version of the script.

<head>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.0/jquery.min.js"></script>
</head>

There are several advantages to using the version of jQuery hosted by google. Firstly the download
time is likely to be reduced — as the file is hosted on a CDN, the nearest copy will be delivered to the user, i.e.
if they are in Europe they will get a European copy, while if they are in Asia they will get an Asian copy, without
needing to directly contact your server. This will also reduce the workload for your server, and as a free service
—why not? Also there is a reasonable chance that the user will already have visited a site that also uses google’s
version of JQuery, in which case there may be a copy cached in the user’s browser. A further benefit is increased
latency, as the browser can download files from different servers concurrently. Of course is the CDN happens

to be down, or you are missing an internet connection, your site may not work as you expect it to.

The basic syntax for a JQuery expression involves the “$” function, which is similar to the
“getElementByID()” function introduced in the JavaScript chapter. This function allows you to select HTML

elements from a document and perform some action upon them. The basic syntax is as follows;

S(selector).action()

123

In this case the $ represents JQuery and the getElementBylID() function. “selector” represents any
particular document element, class or id, and action represents any of the predefined jQuery functions that
can be performed on a selector. An example of an action is the “hide()” function, which makes an element
disappear, in reality this is the equivalent of setting the css property of an element to “display:none”, hence
making it disappear. The following give examples of the hide() function, where first the hide function is called
for the paragraph selector (p), which would make any elements that are in paragraphs disappear. Secondly the
element with the class “test” would disappear — notice the “.” indicating that a class is being referenced. Thirdly
the element with the id “test2” would disappear — notice the “#” used to reference an id. Finally “this” could

be used to reference a selector that had already been selected.

$(“p”).hide();
S(“.test”).hide();
S(“#test2”).hide();
S(this).hide();

This illustrates how jQuery allows the developer to find and select specific HTML, based on their id,
their class, or attributes, or values of attributes, etc. This makes the S function, more powerful than simply
getElementByID(), as it returns a jQuery object, upon which a variety of jQuery functions can be called. JQuery
functions may be saved in a separate .js file which can be loaded in the header, therefore it is often important
that the page elements are loaded before a function is defined. This is generally done by placing jQuery code

within a function that is called after the document is loaded, or rather after the document is ready.

S(document).ready(function() {
console.log(“Loaded”)

N;

The document.ready() function makes sure that the page is loaded before jQuery functions are called
upon it, meaning (amongst other things) elements that haven’t been loaded won’t be hidden until they are.
Notice that a function is defined within the document.ready() function, and notice the sequence of different
bracket delimiters needed to complete the code. In this case, the code would log “Loaded” into the console

once the page was ready.

There are a wide variety of ways that selectors can be used to specify particular page elements and

the following code illustrates some options for selecting different page elements.

124

S(document).ready(function() {

S(“*”) //Selects ALL elements on the page

S(“p.intro”) //Selects paragraph elements with the ‘intro’ class
S(“p:first”) //Selects the first paragraph element

S(“ul li:first”) //Selects the first list item (li) in an unordered list (ul)
S(“[href]”) //Selects elements that have a href attribute

S(“a[target='_blank’]”)
S(“a[target!=‘_blank’]”)
S(“tr:even”)
S(“tr:odd”)

1;

//Selects links where the target attribute is _blank
//Selects links where the target attribute is NOT _blank
//Selects even rows in a table

//Selects odd rows in a table

9.1 Handling Events with JQuery

There are a variety of events that jQuery can respond to, such as when a page visitor creates some
action on the page, like moving a mouse over an element or clicking on an element. Previously we saw how a
JavaScript function could be called when the user clicked on a submit button, but in this case the JavaScript
function call was embedded within the form. Using jQuery all the programming logic for handling events, such
as submitting a form, can be separated from the document elements. Separating the behavior of a page from
the contents of a page makes the coding easier both for developing the code, and for maintaining the code.
The main events that can occur on a webpage can be separated into mouse events, keyboard events, form

events and document events.

Mouse Events

click When the user clicks on the element

dblclick When the user double clicks on the element
mouseenter When the user moves the mouse over the element
mouseleave When the user moves the mouse away from the element
Keyboard Events

keydown When the user presses down a key on the keyboard
keyup When the user releases a key on the keyboard
keypress When the user types a key

Form Events

submit When a form is submitted

change When the value of an input is changed

focus When a form input element becomes active

blur When a form element stops being active

Browser Events

load When the page finishes loading

resize When the page is resized

scroll When the page is scrolled

unload When the page is closed

Table 9.1: Events that can be Handled by JQuery

125

9.1.1 Mouse Events

The mouse events revolve around where the mouse is moved to on the page, with the mouseenter
and mouseleave events occurring when the mouse is moved over a particular element. The click and dblclick
events occur logically when the user clicks or double clicks on an element. Let’s look at a complete example.
Here the jQuery library is included in the head, followed by some jQuery code. Notice that the body contains a
heading, 2 paragraphs and a button, but contains no script code at all, not even a function call. From here all
code can be separated from the content of the page. The jQuery script first waits for the document to be
ready, and then adds some code to the click event for the “button” element. When the click event occurs, a

function is called, which hides any paragraph elements.

<html><head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<script>
S(document).ready(function(){
S("button").click(function(){
$("p").hide();
1;
1
</script>
</head><body>
<h2>This is a heading</h2>
<p>This is a paragraph.</p>
<p>This is another paragraph.</p>
<button>Click me</button>

</body></html>

In this second example, we just look at the jQuery code within the header. In this example the
“dblclick” event is used, and this time when the button element is double clicked the element which has the id
“test” is hidden. Note that this function is added to the page after the document is ready, and a further function
is defined within the dblclick event.

<script>
S(document).ready(function(){
S("button").dblclick(function(){
S("#test").hide();
1
};

</script>

With a further example the syntax should become more familiar. This time the event is the

“mouseenter” event, so is initiated when the mouse hovers over the element that has the “myelement” id.

126

This time the $ function is used to identify any paragraph elements that have the test class, and then the hide()
function is called to make them invisible.

<script>
S(document).ready(function(){
S("#myelement").mouseenter(function(){
S("p.test").hide();
1
};

</script>

Essentially the jQuery mouse events can be called for whenever the mouse interacts with any element
on the page, that can be identified by any of the selectors introduced previously. In this example, an alert box
is created when the user moves the mouse away from whatever element has the id “p1”.

<script>
S(document).ready(function(){
S("#p1").mouseleave(function(){
alert("Bye! You have now left p1!");
1
1

</script>

9.1.2 Keyboard Events

There are 3 important keyboard events, keydown, keyup and keypress. As with all of events, the
functions written to deal with the events are event handlers. When typing the action of pressing a key can be
separated between the event of the down press and the event of releasing the key, and so different actions
can be coded for each event. This example concerns when a user types in an element with the id “input”. When
a key is pressed, the element with id “display” is hidden, and when the key is released the element reappears.

<script>
S(document).ready(function() {
S("#input").keydown(function() {
S("#display").hide()
};
S("#input").keyup(function() {
S("#display").show()
1
1

</script>

The 3" keyboard event is the keypress event, which is very similar to the keydown event, except that
pressing non-printing keys such as shift, delete or escape would trigger the keydown event, but as they don’t

127

cause the browser to register a keyboard input, they wouldn’t cause the keypress event. The keypress event
also isn’t officially specified, which means different browsers may respond differently to keypress events.
Clearly it is useful to identify which key has been pressed, and this can be done using the event object passed
as a parameter to the function. The event object has a “which” property that can be used to identify the

character code of the key that was pressed.

<script>
S(document).ready(function() {
S("#input").keypress(function(event) {
alert(event.which);
1;
1

</script>

Standard programming logic can be used within the jQuery function, as in the following example which

stops the default action when the user presses the enter key, which has the character code 13.

<script>
S(document).ready(function() {
S("#input").keypress(function(event) {
if(event.which==13)
{
alert("You pressed enter!");
event.preventDefault();
}
1;
1

</script>

9.1.3 Form Events

Form events are used to handle interactions with the form, such as when a user submits a form. In
chapter 4 we added a function call to the onsubmit parameter for a form to use JavaScript to validate a form;

onsubmit="return validate()"

Using jQuery we can move the programming logic away from the HTML form, by adding code to the
submit event. Separating the programming logic away from the form creates more versatile code, and makes
life easier for designers working alongside coders. In this example, when the form with the id “input” is
submitted, an alert is produced as well as a call to a validate function, before the default event of submitting
the form to the server is prevented.

128

<script>
S(document).ready(function() {
S("#input").submit(function(event) {
alert(“Form Being Validated!”);
validate();
event.preventDefault();
1;
1

</script>

The other form events, “focus”, “blur” and “change” can be used to create code to handle when an
element becomes the active field in a form (focus), or stops being the active field on a form (blur), or when the

value of an element is changed (change).
9.1.4 Browser Events

As we've seen, JQuery allows code to be added to a variety of events allowing the page to respond to
user interaction. As well as for managing user interactions, jQuery also has events that may not be triggered
by the user, such as the document ready function which as we have seen responds to the event when the
document is fully loaded. Similar page events can be handled such as when the page loads, unloads, resizes or

is scrolled, using the browser events.
9.2 JQuery Effects

The examples thus far have largely simply responded to events by making other selectors disappear,
but jQuery has many, much cooler effects that can make the page come to life. Of course the basic hide()
function works by setting the css property of an element to “display:none”, while the show() function is roughly
similar to setting the css property of an element to “display:block”, although technically it will revert the display
property to its previous setting. The hide and show functions can be made more interesting though by adding
parameters. The basic syntax of the hide function is;

S(selector).hide(speed, callback);

The speed parameter could be “slow”, “fast” or an integer reflecting the number of milliseconds it
should take to disappear. If an element is set to hide (or show) using the parameter ‘slow’, it will take 200
milliseconds, while using the parameter ‘fast’ will take 600 milliseconds. While previously the element would
disappear instantly, by setting the hide function to run over time it allows for animations. The callback is a
further function to call after the animation has completed — more about this later in the chapter. As the hide
and show functions switch the state of an element between visible and not visible, it is possible to lose track
of whether an element is visible or not. A further function “toggle()” will change the current state of the
element depending on whether it is visible or not.

The following example demonstrates how a paragraph element can be hidden over the period of a
second (1000 milliseconds), after a button is clicked.

129

<script>
S(document).ready(function(){
S("button").click(function(){
$("p").toggle(1000);
};
1

</script>

9.2.1 Fade Effects

Within CSS the opacity of an element can be set to specify the transparency of an element. The default
value for opacity is 1, where elements are completely visible or solid, however the opacity can be set between
0 and 1, where 0 is completely see through. This example demonstrates 4 different levels of opacity for a plain
black box.

<html><head>

<style>

span {
height: 100px;
width: 100px;
background: #000;
float:left;

}

span.opacity100 { opacity: 1; }

span.opacity70 { opacity: 0.7; }

span.opacity40 { opacity: 0.4; }

span.opacityl10 { opacity: 0.1; }

</style>

</head><body>
opacity: 1
opacity: 0.7
opacity: 0.4
opacity: 0.1

</body>

</html>

The result of this displays 4 boxes with different opacities. On the surface it appears similar to a
previous example, as though there are 4 boxes with different colours, but in this case anything behind the

elements could be seen through.

130

Figure 9.1: Opacity of Page Elements

The fade effects make use of the opacity property of elements, by gradually changing the opacity over

time to make it appear as though an element is fading in or fading out. There are 4 different fade related

effects.
Fade Effects
fadeln() Gradually changes opacity until the element is completely transparent
fadeOut() Gradually changes opacity until the element is completely opaque
fadeToggle() Switches between opaque and transparent
fadeTo() Changes opacity to a specified level

Table 9.2: Fade Effects in JQuery

The fadeln(), fadeOut() and fadeToggle() functions all take a parameter specifying either “slow”, “fast”
or a time in milliseconds for the transition, and can also specify a callback function. The following example will

fade the 2 specified divs at different speeds.

<script>
S(document).ready(function(){
S("button").click(function(){
S("#div1").fadeOut(“fast”);
S("#div2").fadeln("slow");
S("#div3").fadeToggle(3000);
N;
1

</script>

The fadeTo() function is even more useful allowing the developer to specify the level of opacity for the
element to fade to — either increasing the opacity of decreasing it. This function takes 2 parameters, both the

speed of the fade, and the resulting opacity level.

<script>
S(document).ready(function(){
S("button").click(function(){
S("#div1").fadeTo("slow",0.15);
S("#div2").fadeTo("slow",0.4);

1;

131

N;

</script>

9.2.2 Slide Effects

While the fade effects gradually change the opacity property of an element, slide effects gradually
change the height property of an element, which gives the effect of an element sliding in or out. If an element
slides in, by changing its height property, later elements in the page will move down to make space.

Slide Effects

slideDown() Slides an element down, by increasing its height
slideUp() Slides an element up, by decreasing its height
slideToggle() Switches the state of an element between up and down

Table 9.3: Slide Effects in JQuery

The next example, with limited css, shows a menu div which when clicked upon displays a slide down

panel.

<html><head>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.0/jgquery.min.js"></script>
<script>
S(document).ready(function(){
S("#menu").click(function(){
S("#panel").slideDown("slow");
1
1;
</script>
<style>
#panel,#menu { border:solid 1px #333; }
#panel { display:none; }
</style>
</head><body>
<div id="flip">Click Here</div>
<div id="panel">Hello world!</div>
</body></html>

The same example can be extended using the slideToggle() function to slide the panel up and down.

<script>
S(document).ready(function(){
S("#menu").click(function(){
S("#panel").slideToggle("slow");
};
1;

</script>

132

9.2.2 Animation Effects

Animations can be created by modifying css properties of elements over a period of time, perhaps by
gradually changing the position, size or colour of page elements. Later we shall investigate jQuery’s “css()”
function, but first jQuery also has an “animate()” function, which provides an easy interface for changing css

properties over a period of time.
S(selector).animate({params}, speed, callback);

This function takes several parameters including first the params, or css properties that should be
changed, secondly the speed of the change, and finally a callback function to perform after the animation
completes. In this example, when the button is clicked, any div element is animated by moving it so that the

left property is 250 pixels, or 250 pixels from the left of its containing element.

<script>
S(document).ready(function(){
S("button").click(function(){
S("div").animate({left:'250px'});
1;
1

</script>

More than one css property can be changed at the same time as in the following example, where the

div element is resized (to a 150 pixel square), moved and made 50% opaque.

<script>
S(document).ready(function(){
S("button").click(function(){
S("div").animate({
left:'250px’,
opacity:'0.5',
height:'150px’,
width:'150px’,
1;
1;
1

</script>

The css property changes could also be relative values, whereas in the previous examples the size and
position of the element after the animation is set absolutely to 150 pixels size, and 250 pixels from the left, this

could be relative value when compared to its current position and size. In the next example the element is

133

moved in the same way, but the size of the element is adjusted to be 150pixels bigger, which means each time
the button is clicked the element will get bigger and bigger.

<script>
S(document).ready(function(){
S("button").click(function(){
S("div").animate({
left:'250px',
height:'+=150px’,
width:'+=150px'
1;
N;
1

</script>

As well as coding animations to happen at the same time, animations can also happen sequentially.
The next example differs slightly, as first a variable is created to store the div, then 4 calls to the animate

function are called, one after another.

<script>
S(document).ready(function(){
S("button").click(function(){
var div=S$("div");
div.animate({height:'400px',opacity:'0.2'},"slow");
div.animate({width:'400px',opacity:'1'},"slow");
div.animate({height:'50px',opacity:'0.2'},"slow");
div.animate({width:'50px',opacity:'1'},"slow");
hE
h;

</script>

This example works as expected because each of the functions is called on the same element, however
when dealing with timing events the sequence of events can become confused, such as in the following

example.

<script>
S(document).ready(function(){
S("button").click(function(){
S("div").hide(“slow”);
alert("All Gone!");
hE
h;

</script>

134

In this case the alert will be shown at the same time as the hide animation begins, which would create
the alert prompt before the div has been hidden. It is this kind of scenario where a callback function is useful.
A callback function is called after the current effect is complete, for example after the current animation

completes. In the following example, the callback function is called to create the alert after the div is hidden.

<script>
S(document).ready(function(){
S("button").click(function(){
S("div").hide("slow",function(){
alert("All Gone!");
1;
N;
1

</script>

Another related feature of jQuery is the ability to chain functions together one after another. In this
example each function call may as well be on the same line with each being called sequentially on the same
div element.

<script>
S(document).ready(function(){
S("button").click(function(){
S("div").animate({height:'400px',opacity:'0.2'},"slow")
.animate({width:'400px',opacity:'1'},"slow")
.animate({height:'50px',opacity:'0.2'},"slow")
.animate({width:'50px',opacity:'1'},"slow");
1;
1

</script>

Key Points

e JQuery is a powerful JavaScript library that makes writing client side code easy.
e Selectors are used to identify elements within a webpage.

e JQuery code is written to respond to events when a user interacts with a webpage, such as when they
click on a particular element.

e JQuery can be used to respond to events by changing the document, through animation effects such

as fading, sliding or changing other CSS properties.

135

Further Resources

1) JQuery can be downloaded from the main JQuery website, which also has excellent reference
materials, here:-

https://jquery.com/

2) w3schools has a tutorial / guide that introduces JQuery, which can be found here:-

https://www.w3schools.com/jquery/

Assignment

JQuery can make your calendar from the previous chapters more attractive — write code so that the

box for each day changes colour each time the mouse hovers over it and be imaginative about how else the
calendar can be more user friendly.

Revisit the form validation assignment from chapter 8, but use JQuery to give the user more help when
filling in the form by highlighting required fields that haven’t been filled in correctly.

136

Chapter 10

JQuery and the DOM

Objectives

This chapter introduces the Document Object Model, or DOM. The DOM presents a different way of
visualizing a webpage, or document, where each element in the document is an object that is interlinked with
the other elements in a tree-like structure. JQuery offers great tools to manipulate the DOM, by adding or
removing elements from the DOM, or traversing the DOM to find other selectors. After reading this chapter

you should:-

e Understand how a webpage can be seen as a document composed of interrelated objects.
e Be able to change text, html, values and attributes on a page.

e Beable to add and remove elements in different ways from the DOM.

e Be able to traverse the DOM, moving up, down or across to locate other elements.

e Be able to use filters to change the selected DOM elements.

Contents

10.1 The Document Object Model
10.2 Manipulating the Document Object Model
10.3 Navigating the Document Object Model

137

The DOM, or Document Object Model, is a structured model of a webpage, illustrating how various
parts of the page fit together. A webpage is a document, which is comprised of a number of elements, or
objects, which are all interconnected. These objects each have properties and capabilities. By defining the
webpage as a model of objects, it creates a programming interface that can be used to manipulate it, in this

case JavaScript, or jQuery, is used to navigate and edit elements in the DOM.

10.1 The Document Object Model

A webpage is a document, written using HTML which instructs the browser the content and structure
of the page, as well as how it should be styled. While the browser parses a version of the document, the DOM
provides a neutral interface for scripts to dynamically access and change the content, structure and style of the

document.

The DOM is a structured model of a webpage. While the
browser parses a version of the document, the DOM provides
a neutral interface for scripts to dynamically access and

change the content, structure and style of the document.

The DOM can be visualized as a tree of interrelated nodes, with the document being the root node,
and elements on the page being children nodes, beginning with the HTML tags. Consider the following very

simple HTML page.

<html>
<head>
<title>Simple Page</title>
</head>
<body>
<div class="simple">
<h1>My Heading</h1>
<p>My Paragraph</p>
</div>
</body>
</html>

The root of the DOM is the document, which contains the html tag as a “child” beneath it in the tree.
Within the HTML element, there are 2 subparts, the head and the body. The resulting document could be
visualized then in several ways. Firstly, the view rendered by the browser after parsing the html document,

which would appears similar to this.

138

j [Simple Page X__.
C N [filey//C//samples/DOM.html

My Heading

My Paragraph

Figure 10.1: Sample Page to lllustrate the DOM

An alternative way of visualizing it, would be as a tree like structure. Here the document is considered
the root node, with the html tag being its child. The html tag has 2 further children; the head and body tags.
These tags have further children until leaf nodes are reached, such as the paragraph leaf node which only
contains text. Clearly this is a simple webpage with few elements — a more complex webpage could still be
visualized as a tree which contains more nodes / elements. When a tag is nested inside another tag, it becomes
a child of that tag.

document
html
head body
title div
text: Simple Page class: simple
hl p
text: My Heading text: My Paragraph

Figure 10.2: Example of the DOM

Afurther example of this would be an unordered list, using the tag. Within the opening and closing
 tags, a number of list items can be created, each inside tags. Each of the list items naturally become
children of their parent tag.

Another way of visualizing the DOM is as a textual version of the tree.

139

L HTmML
—HEAD
H#text:
TITLE
Lstext: Simple Page
H#text:
m#text:
—BODY
FH#text:
—DIV class="simple"
F#text:
—H1
Lstext: My Heading
m#text:
P
Lstext: My Paragraph
—H#text:
—H#text:

Figure 10.3: Textual Version of the DOM

10.2 Manipulating the Document Object Model

jQuery offers some useful functions for navigating through the DOM, and editing the contents. We
could use jQuery to identify the paragraph element in the previous example, and then we could change the
text displayed within the paragraph. There are several jQuery functions that are useful for accessing, and
changing parts of the DOM, and given that this can be controlled by script in the browser, it means the page
can be changed after it has loaded, and based on user interactions with the page. In this section we look at the
text(), html(), val() and attr() functions.

10.2.1 Manipulate Text

The “text()” function will either return the current text contents of an element, or change them,
depending on whether a parameter is included or not. In this example an alert will display the contents of the
element that has the id “myparagraph”, after the button is clicked.

<script>
S(document).ready(function(){
S("#button").click(function(){
alert(S("#myparagraph").text());
};
1

</script>

A quick edit of this script can allow the script to change the content of the “myparagraph” element by

including a parameter containing the new text.

140

<script>
S(document).ready(function(){
S("#button").click(function(){
S("#myparagraph").text(“Changed the text to this”);
};
1

</script>

10.2.2 Manipulate HTML code

HTML of course is a combination of text and tags, and while the text() function will return the text
contained in an element, the html() function will return any html within the element, including other html tags.
In this case the text() function would return “Some text”, while the html() function would return

“Some text".

<script>
S(document).ready(function(){
S("#button").click(function(){
alert(S("#myparagraph").text());
alert(S("#myparagraph").html());
1
1
</script>

<p id="myparagraph”>Some text</p>

Of course the html() function can also change the html within an element, simply by adding a
parameter to the function call. In this case the html within the paragraph tag would be changed to display

“Hello World” within strong tags.

<script>
S(document).ready(function(){
S("#myparagraph").html(“Hello World");
1
</script>

<p id="myparagraph”>Hello World</p>

10.2.3 Manipulate Values

The val() function is used to manipulate the values stored in an input field, such as a text box. Again,
the function will either return or set the value. This can be particularly useful for validating a form, by accessing
the value and checking that it meets some specified requirement. In this example the field with the id “pass1”
is checked to make sure that it has at least 8 characters.

141

<script>
S(document).ready(function(){
S("#submit").click(function(){
if(S("#pass1").val().length < 8) { alert(“Password must be at least 8 letters long”); }
};
1

</script>

10.2.4 Manipulate Attributes

As we have seen, elements may contain text, and they may contain further html. Some elements may
also have a value. HTML elements also have attributes, which are assigned within the tags. These attributes
can be manipulated using the attr() function. In this example the link with the id “mylink” is located and the
href and title attributes are changed.

<script>
S(document).ready(function(){
S("#submit").click(function(){
S("#mylink").attr({
"href" : "http://www.google.com",
"title" : "Google"
1;
1;
1

</script>

10.2.5 Adding Elements to a Page

As well as allowing the developer to change existing HTML elements, jQuery also affords the ability to
add and remove elements from the DOM. There are 4 functions in jQuery used to add elements to a page, all
of which add an element in relation to an existing element that has been located using the $ function. They
are before(), after(), prepend() and append().

Adding to a Page

before() Adds content before the specified element

after() Adds content after the specified element
prepend() Adds content at the start of the specified element
append() Adds content at the end of the specified element

Table 10.1: Adding Elements to a Page with JQuery

In the following example, the page begins with just a simple div with id “mydiv”, which contains the
text “Original Text”. However when the document is ready, 4 function calls are made, one to each of the

functions described above, to demonstrate exactly where the content would be added.

142

<html><head><title>Add</title>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script>
<script>
S(document).ready(function() {
S('#mydiv').before("BEFORE");
S("#mydiv').after("AFTER");
S('#mydiv').prepend("PREPEND");
S('#mydiv').append("APPEND");
N;
</script>
</head><body>
<div id="mydiv">0riginal Text</div>
</body></html>

When loaded the page looks like this;

BEFORE
PEEPENDOmngimnal TextAPPEND
AFTER

Figure 10.4: Demonstrating before(), prepend(), append() and after() in JQuery

This is perhaps better explained by inspecting the body element after the code has run.
BEFORE<div id="mydiv">PREPENDOriginal TextAPPEND</div>AFTER
10.2.6 Removing Elements from a Page

There are 2 further functions which can be used to remove elements from a page, these are remove()
and empty(). The difference between the two functions is that the remove() function will completely remove
an element, and delete all of its children elements, whereas with the empty() function, the contents of the

element are removed, but the element remains.
10.2.7 Changing the CSS of Elements

There are also several ways to change the CSS of an element. We have already seen how the attr()
function can be used to return, or set, the attributes of a page element, and this of course could be used to set
the class attribute of an element. However there are alternatives, such as the addclass(), removeclass() and

css() functions. The addclass() function just adds a class to any specified element.

<script>
S(document).ready(function(){
S(“#mydiv”).addclass(“subheading”);
H

</script>

143

So while the addclass() and removeclass() have the ability to add styles from a separate stylesheet, the
css() function allows styles to be added inline, specific to a particular element. In this example, the background
color for any paragraphs will be set to green, when the button is clicked.

<script>
S(document).ready(function(){
S("button").click(function(){
S("p").css("background-color","green");
1
1

</script>

In this case the style is added inline, with the resulting element looking like this when inspected.
<p style="background-color: green;">This is a paragraph.</p>

CSS is of course used for layout as well as style. In the previous chapter we investigated how jQuery
can be used to move elements around the screen dynamically. jQuery also provides means to manipulate the
dimensions of elements. The width() and height() functions allow access to get, or set the width and height of
an element. Each element is naturally surrounded by padding, a border and a margin, and these can be
controlled by CSS properties. jQuery also provides functions to return the true sizes of an element after
padding, borders and margins are taken into consideration.

Margin
A
Border
A
Padding e sae v
A = = =
= = & =
= T
Element o o o =
= T T e
v E E E
i 3
v
A 4

width()

A
v

innerwWidth()

A

Y

outerWidth()

A

4

outerWidth(true)

o
-

Figure 10.5: Editing the Box Model with JQuery

A4

144

Whilst the width() and height() functions return the exact dimensions of the element, an alternative is
the innerWidth() and innerHeight() functions, which return the dimensions of the element including its
padding. The outerWidth() and outerHeight() functions return the dimensions including the padding and
border, while adding a parameter to the outerWidth(true) and outerHeight(true) functions also includes the

margin around the element.
10.3 Navigating the Document Object Model

As stated previously, the DOM is a treelike representation of the contents of a webpage. Using
scripting languages like jQuery, the page becomes dynamic, changing over time, and so also the DOM is
dynamic with nodes (elements) being added and removed. One of the most powerful features of jQuery is the
ability to navigate and traverse the DOM, moving from one page element and locating other page elements,
even after the page has transitioned through elements being added and removed. The DOM traversal functions
in jQuery include functions for moving up the tree, functions for moving down the tree, and functions for
traversing across the tree.

10.3.1 Traversing UP the DOM

The key function here is the parent() function, which given one page element, allows jQuery to identify

the parent element, or containing element. For the following examples, the following page is used.

<html><head>
<style> .box { display: block; border: 2px solid #ddd; padding: 2px; margin: 2px; } </style>
</head><body>
<div class="box grandparent" id="grandparent">Grandparent
<div class="box" id="parent">Parent
<div class="box" id="child1">Child 1</div>
<div class="box" id="child2">Child 2</div>
<div class="box" id="child3">Child 3</div>
<div class="box" id="child4">Child 4</div>
</div>
</div>
</body></html>

When displayed the page looks as follows, with a grandparent div that contains a parent div, which
contains 4 further child divs, each of which is styled with a grey border as shown in figure 10.6.

145

Grandparent
Parent
Child 1

Child 2
Chald 3
Chald 4

Figure 10.6: Sample Page for Demonstrating DOM Navigation

Now if we add the following script which first identifies the element in the document that has the id
“child1”, and then navigates to the parent of this element. Once the parent has been located, the css of the
border is highlighted.

<script>
S(document).ready(function() {
S('#child1').parent().css({"border":"2px solid black"});
H

</script>

The result is as follows.

Grandparent

Parent
Chald 1

Chuld 2
Chuld 3
Child 4

Figure 10.7: The parent() Function in JQuery

An alternative would be to change this to use the parents() function, which selects all parents of the

element, including grandparents etc.

<script>
S(document).ready(function() {
S('#child1').parents().css({"border":"2px solid black"});
1;

</script>

146

Notice that now, not only does the parent have a black border, but also the grandparent. There are a
further 2 borders outside of the grandparent, one is for the body element, and the outer one for the document,

or html element.

Grandparent

Parent

Child 1
Child 2
Child 3
Chald 4

Figure 10.8: The parents() Function in JQuery

This can be further refined by using the parentsUntil function, where parents can be identified, until

parents with a certain selector, such as the body.

<script>
S(document).ready(function() {
S('#child1').parentsUntil("body").css({"border":"2px solid black"});
1;

</script>

The result is as follows.

Grandparent

Parent

Child 1
Chuld 2
Child 3
Child 4

Figure 10.9: The parentsUntil() Function in JQuery

An alternative which results in exactly the same result, would be to add a parameter to the parents()

function, specifying to only select parents that are “div” elements.

147

<script>
S(document).ready(function() {
S('#child1').parents("div").css({"border":"2px solid black"});
1;

</script>

10.3.2 Traversing DOWN the DOM

Just as jQuery enables traversing up the tree to parents, it also affords the ability to traverse down the
tree, using 2 key functions; children() and find(). The children function will highlight all the immediate children

for the selected element, so if it was called for the grandparent, then the parent element would be identified.

<script>
S(document).ready(function() {
S('#grandparent').children().css({"border":"2px solid black"});
1

</script>

In this case, only the parent element is identified.

Grandparent

Parent

Child 1
Child 2
Child 3
Child 4

Figure 10.10: The children() Function in JQuery |

However, if the same function was called for the parent, or for the children of the children, then all

the child elements would be selected.

<script>
S(document).ready(function() {
S('#grandparent').children().children().css({"border":"2px solid black"});
il

</script>

This has the same effect as;

148

<script>
S(document).ready(function() {
S('#parent').children().css({"border":"2px solid black"});
1;

</script>

Both examples will select all 4 children elements.

Grandparent
Parent

Child 1
Child 2
Child 3
Child 4

Figure 10.11: The children() Function in JQuery I

The second function for traversing down the DOM is the find() function, which searches through an
elements children, grandchildren, etc. for an element that matches a specified condition, for example, we could

search from the grandparent for any lower level elements that have the id “child2”.

<script>
S(document).ready(function() {
S('#grandparent').find("#child2").css({"border":"2px solid black"});
1

</script>

The result from this script would be.

Grandparent

Parent

Chald 1
Chuld 2
Chuald 3
Child 4

Figure 10.12: The find() Function in JQuery |

149

The selector in the parameter sent to the find() function could be any valid selector, so naturally an
html or class selector would be a more logical selector than an id selector. Alternatively the wild card selector
could be used to select all lower level elements.

<script>
S(document).ready(function() {
S('#grandparent').find("*").css({"border":"2px solid black"});
1;

</script>

The resulting page is as follows.

Grandparent

Parent

Child 1
Child 2
Child 3
Child 4

Figure 10.13: The find() Function in JQuery I

10.3.3 Traversing ACCROSS the DOM

The third way the DOM can be traversed is across, where jQuery allows us to navigate to other

elements at the same level in the tree. There are several functions to support this.

Traversing Across the DOM

siblings() Identifies all other elements with the same parent

next() Identifies the next element with the same parent

nextAll() Identifies all subsequent elements with the same parent

nextUntil() Identifies all subsequent elements with the same parent, until one that
satisfies a specified selector

prev() Identifies the previous element with the same parent

prevAll() Identifies all previous elements with the same parent

prevUntil() Identifies all previous elements with the same parent, until one that
satisfies a specified selector.

Table 10.2 Traversing Across the DOM
10.3.4 Traversing using filters

Some of the selectors we have used so far can identify many elements on the page, particularly if the
page is a large complex one. Filters can be used to narrow down the elements selected. In these examples, the

follow page is used, which consists of 4 divs.

150

<html><head>
<style>
.box { display: block; border: 2px solid #ddd; padding: 2px; margin: 2px; }
</style>
</head><body>
<div class="box">| am the first</div>
<div class="box intro">l am the second</div>
<div class="box">l am the third</div>
<div class="box">l am the fourth</div>
</body></html>

When loaded this page will look as follows.

[am the first
I am the second
[am the third

[am the fourth

Figure 10.14: Traversing Using Filters

If we want to choose the first element returned by a selector, we can add the first() filter to the selector
statement. For example, we could select the divs on the page, and then select only the first div from those

returned.

<script>
S(document).ready(function() {
S('div').first().css({"border":"2px solid black"});
1;

</script>

In this example, only the first div will be affected.

I am the first

I am the second
I am the third

[am the fourth

Figure 10.15: The first() Function in JQuery

The opposite effect can be gained by using the last() filter, which would just return the last element

identified by the selector.

151

<script>
S(document).ready(function() {
S('div').last().css({"border":"2px solid black"});
1;

</script>

The result would be the fourth and last element being selected.

I am the first
I am the second

I am the third

[am the fourth

Figure 10.16: The last() Function in JQuery

The eq() filter takes a parameter to specify a number for which element should be selected.

<script>
S(document).ready(function() {
S('div').eq(2).css({"border":"2px solid black"});
H

</script>

Here the result would highlight the third div, as counting the elements begins from 0, so the element
with index 2 would be the third div.

[am the first

[am the second

[am the thurd

[am the fourth

Figure 10.17: The eq() Function in JQuery

Two further filters can be used to test whether an element satisfies a further filter or not.

<script>
S(document).ready(function() {
S('div').filter(".intro").css({"border":"2px solid black"});
1

</script>

152

Here the filter() function is used to reduce the divs to those that also have the intro class, which is our
example is only the second div.

[am the first

[am the second

[am the third

[am the fourth

Figure 10.18: The filter() Function in JQuery

Alternatively we could select elements that don’t satisfy an extra condition, by using the not() filter.

<script>
S(document).ready(function() {
S('div').not(".intro").css({"border":"2px solid black"});
H

</script>

This would of course select the other 3 divs.

[am the first

[am the zsecond

[am the third

[am the fourth

Figure 10.19: The not() Function in JQuery

Key Points

e The Document Object Model, or DOM, represents the structure of a webpage with each element on
the page an object that are related in a tree structure.

e JQuery offers a variety of functions that make manipulating the DOM straightforward.

e Existing DOM element can be changed, in terms of their text, their HTML, the values and their
attributes.

e New elements can be added to the DOM, and elements can be removed.

e The DOM can be navigated, once a selector has been targeted, JQuery makes it easy to move up, down

or across the tree to move to another element.
Further Resources
1) The JQuery website has a guide to the JQuery functions that are involved in DOM manipulation,

which can be found here:-

153

https://api.jquery.com/category/manipulation/
2) Tutorialspoint has a collection of samples for how the DOM can be manipulated, that can be
found here:-
https://www.tutorialspoint.com/jquery/jquery-dom.htm
3) A further tutorial offering an introduction to DOM manipulation can be found here:-

http://www.jquery-tutorial.net/dom-manipulation/introduction/

Assignment

Now it’s time to add to the specification for a web-based calendar app. Similar to Google’s calendar,
write software that allows a user to keep track of their appointments.

Basic Features:-

e Each user should be able to register and securely login to their calendar.
e Each user should be able to create appointments for particular dates and times.
e Appointments should be stored in a database so the user can view them each time they reopen their

browser.
e Users should be able to view appointments in “Day View”, “Week View” or “Month View”.

The calendar project should be written from scratch in HTML, CSS, PHP, JQuery, MySQL. The features

”)

listed here are base features — there are plenty of ways the calendar can “impress

154

Chapter 11

Asynchronous JavaScript and JQuery Ul

Objectives

This chapter focuses on more advanced features of JQuery, beginning with how to use it for
asynchronous web applications where different parts of the page are loaded at different times using a
technique commonly referred to as AJAX. The chapter also looks at the JQuery Ul extension which adds further
user interface features to the core library, such as dialog boxes and the ability to drag elements around the
screen. After reading it you should:-

e Understand how an AJAX call can be used to update a page.
e Be familiar with the key AJAX functions in the JQuery library - load(), get(), post() and ajax().
e Be able to add further User Interface features including date pickers, dialog boxes and enable the page

visitor to drag elements around the screen.

Contents

11.1 Introducing AJAX
11.2 JQuery and AJAX

11.3 JQuery

155

The previous two chapters have introduced JQuery, demonstrating how the library can be used to
make writing JavaScript easier. The library contains a wide variety of JavaScript functions that can be used to
handle events such as when a page visitor interacts with elements on the page, and also some functions for
manipulating the DOM. This chapter begins by using JQuery to communicate with the server, and then looks

at JQuery extensions that can be used to make improve the user interface.
11.1 Introducing AJAX

AJAX stands for Asynchronous JavaScript and XML and is used for making asynchronous web
applications, which means that different parts of the page can be loaded at different times. Early websites were
built on the principle that when users interacted with a site, a complete new HTML file needed to be requested
and sent from the server. If the interaction only required changing a small part of the page, this becomes very
inefficient and places unnecessary loads on the server, and bandwidth, it also results in a poor user experience.

AJAX stands for Asynchronous JavaScript and XML and is used
for making asynchronous web applications, which means that

different parts of the page can be loaded at different times.

One early approach to resolving this was to divide the page into frames, whereby each section of the
page could load a different HTML file and could update separately. While this approach was popular for a while,
it has several drawbacks and is no longer supported in HTML5. Some of the problems with frames include
difficulties for search engines to properly index pages, different parts of the page appearing differently on
different screens due to different resolutions, the back button not working as expected and some devices,

particularly smaller devices not being big enough to be divided up. Needless to say, there is a better way.

As well as being able to update parts of a page independently from each other, AJAX provides a
convenient way for the browser to communicate with the server, allowing the webpage to request, and
receive, data from a server after it has been loaded, as well as send data to the server in the background. AJAX
is not a programming language itself, it is just a combination of some JavaScript running in the browser, and
using the browsers XMLHttpRequest object to request data from the server. It is called AJAX because originally
XML (eXtensible Markup Language) was used to transport the data, but today is it common to transport the
data as plain text, or in JSON (JavaScript Object Notation).

Figure 11.1 shows the general way that AJAX works. We have previously seen different events that can
occur on a webpage, such as clicking on a button, or when a page loads. Here, when an event occurs an
XMLHttpRequest object is created by JavaScript. This object is then sent to the server, which processes it and
creates a response to send back to the browser. The response could be in XML form, or JSON for example.
When the response arrives, the browser uses JavaScript to respond appropriately, such as by updating the page

with the new data.

156

Browser Internet Server

1) Event Qcours

| 3] 5end XMLHItDRequest object

5) 5end Response

5) Read the response in Javascript

7] lavascript performs action, such as
updating the page.

Figure 11.1: How AJAX Works

Clearly the XMLHttpRequest object is an important part of this process, and fortunately the object is
a built in component of all modern browsers (Chrome, Firefox, Opera, IE 7+, Edge, Safari). Unfortunately as a
developer you can’t control which browser is being used, and older browsers may not be compatible — IE5 and
IE6 use an ActiveObject instead of the XMLHttpRequest object. Fortunately, as we will soon see, JQuery again
includes methods that make AJAX much simpler and function across browsers. Before investigating JQuery and

AJAX it is worth looking at how an AJAX request might be written in raw JavaScript.

<html>
<body>
<p id="demo" onclick="UpdateContent()">Original Page Content.</p>
<script>
function UpdateContent() {
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {
if (this.readyState == 4 && this.status == 200) {
document.getElementByld("demo").innerHTML = this.responseText;
}
h
xhttp.open("GET", "newdata.txt", true);
xhttp.send();
}
</script>
</body>
</html>

The page is a simple example of an AJAX function call. Firstly the page consists of a single paragraph
element, which calls the UpdateContent() function when it is clicked upon. This function creates a new
XMLHttpRequest object and then defines a function to be called whenever the readyState property changes
for it. The readyState property will change several times during a Http request, as it is sent to the server, with

ultimately the 4t readyState occurring when the request has been completed and a response returned.

157

Request not initialized

Server connection established

Request received

Processing request

4 | Request finished and response is ready
Table 11.1: The readyState Property of XMLHttpRequest

WIN|FR|O

Once the completed readyState is reached, and the status is “OK” (or 200), the text in the paragraph
is changed to whatever the server responds with, converted to a string. Before the request is sent to the server,
the url is specified. For security reasons the file must be located on same domain, and in this example the
requested file is newdata.txt, as indicated in the following line. To test the code, just create a text document

with any content, when you click on the paragraph, the text will change to the contents of newdata.txt.
xhttp.open("GET", "newdata.txt", true);

In this line of code, the third parameter is set to ‘true’, to indicate that the request should be done
asynchronously. Server requests should be asynchronous, so that JavaScript can continue executing other
scripts while waiting for the server to respond, and deal with the response only when it is ready. AJAX is a
powerful tool that is found throughout the web, but as can be seen from the sample above, coding it can get
tricky, particularly when needing to deal with different browsers. Fortunately JQuery contains some AJAX
methods that make AJAX much simpler.

11.2 JQuery and AJAX

The JQuery library contains several functions to support AJAX, allowing the browser to load fresh
content from the server, or post data back to the server, along with callback functions to react after the server

responds.
11.2.1 JQuery load() Method

The load() method is the simplest ajax function, allowing data to be called from a server and returned
into a selected element. At its simplest, it could load the contents of a text file into a specified element, such

as;

S(“#div1”).load(“data.txt”);

In this simple example, the contents of data.txt will be displayed in the element with id ‘div1’. Clearly
the data to be loaded need not be a text file, it could be a php file that includes queries to your database, which
could be used to update the latest content. The file could also contain standard html, in which case a specific
selector could be specified to target a particular part of the file. In the following example, the contents of the
element with id “news” is loaded from data.htm, and inserted into div1.

S(“#div1”).load(“data.htm #news”);

Given that the function requires a response from the server, which for many reasons will take an

unpredictable amount of time, a callback function can be added, which can be particularly useful to perform

158

some task after the response has been returned. The callback function has a few different parameters,

containing the information returned from the server;
responseTxt — contains the content returned assuming the call was a success.
statusTxt — contains the status of the call, for example “success” or “error”.
xhr — contains the actual XMLHttpRequest object.

The callback function can therefore be used to react appropriately in case the server returns an error.
In the following example, the contents of data.txt is loaded into divl, however, for testing purposes a callback

function is used to write an error to the console if the server returns an error message.

S(“#p1”).click(function(){
S(“#div1”).load(“data.txt”, function(responseTxt, statusTxt, xhr){
if(statusTxt == “error”) {

“wu

console.log(“Error” + xhr.status + “ “ + xhr.statusText);

}
if(statusTxt == “success”) {
console.log(“Successfully Loaded New Data”);
}
h;
1

11.2.2 JQuery S.get() Method

The S.get() method requests data from the server using the HTTP GET request, with the returned data
being available in a callback function when the server successfully responds. Unlike the load() method, the data
isn’t immediately loaded into an element, instead the callback function determines what to do with the data.
The function takes 2 parameters, as shown below, the first being the URL being requested on the server, and

the second being the callback function.

S(“#p1”).click(function(){
S.get(“data.txt”, function(data, status){
console.log(data + “: status : “ + status);
1
1;

11.2.3 JQuery S.post() Method

The $.post() also requests data from the server, but this time using the HTTP POST request, so it is

often used to send some data to the server for processing. This time the function takes 3 parameters, with the

159

data being posted to the server being the second parameter. In this example, a name and id is sent to the
add_student.php file on the server. The add_student.php file could then insert that data into a database.

S(“#p1”).click(function(){
S.post(“add_student.php”,
{
name: “Ken”,
id: “1234”
L
function(data, status){
console.log(data + “: status : “ + status);
1
1;

11.2.3 JQuery S.ajax() Method

The AJAX methods introduced so far all invoke a further $.ajax() method, which generally only needs
to be used if the .load(), $.get() or S.post() methods aren’t sufficient. The S.ajax() method sends a set of
name/value pairs to the server, allowing more versatility to the call, for example an AJAX call is asynchronous
by default, but it is possible to set a synchronous request by setting “async: false”. Clearly making the request
synchronous may lock the browser until it completes. A username and password could be passed securely using
the S.ajax() method. The code example below performs much the same as in the $.post() method described
above, and in general the $.post() method is preferred; the following example is only intended to demonstrate

the syntax of an $.ajax() call.

S(“#p1”).click(function(){
S.ajax({
url:“add_student.php”,
data: { name: “Ken”, id: “1234" },
method: POST })
.done(function(html){
console.log(html);
1
1;

11.3JQuery Ul

The previous chapters have demonstrated how JQuery makes JavaScript easier, and helps make
webpages come to life. JQuery Ul has been built on top of JQuery supporting a variety of user interface effects,
interactions and widgets designed to help make websites more professional, and more appealing. Some
examples of the features of JQuery Ul include attractive date pickers, the ability for the user to drag and drop

elements around the page, menus and dialog boxes.

160

11.3.1 Getting Started with JQuery Ul

Just like the main JQuery library, JQuery Ul can be downloaded and installed on your server, or
accessed from the JQuery website. If you choose to host it yourself, during the download process you will be
able to customize the css theme so that it matches your page. Three lines of code need to be added to the
header of your webpage to link to the JQuery Ul css and js files.

<link rel="stylesheet” href="jquery-ui.min.css”>
<script src="external/jquery/jquery.js”></script>
<script src="jquery-ui.min.js”></script>

After the js and css files are included, any of the features of JQuery Ul can be accessed.
11.3.2 A Simple Date Picker

Because dates can take many different formats some care is needed when asking a user to input a
date - most notably the difference between dd/mm/yyyy vs mm/dd/yyyy. Fortunately with HTML5 the input
type of date provides an easy way of giving a drop down date picker. Later chapters will explore HTMLS5 features
further, but the date picker is browser dependent, meaning it may appear differently in different browsers and
may not be available for older browsers.

<input type="date">

The standard HTML input type date can be used on forms to get a date input.

mm / dd / yyyy v I

May 2018 = N

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5
6 T 8 g m " 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 20 0 300 AN

Figure 11.2: The Standard HTML Date Picker, as seen in Chrome.

The current version of Chrome displays a dropdown calendar format as seen in Figure 11.2, while in

Edge the same code displays a dropdown set of sliders for the month, day and year as seen in Figure 11.3.

161

mm/dd. yyyy

LIECETTIINGT s] 2015
January 26 2014
February 27 2015
March 28 2016
April 29 2017
May | 30 | 2018
June 31 2019
July 1 2020
August 2 2021
September 3 2022
v X

Figure 11.3: The Standard HTML Date Picker, as seen in Edge.

One way of creating a consistent view is to use the JQuery Ul date picker. To do so involves adding an

id to a text input box, and then adding JavaScript code to add the datepicker function to the id.

<script>
S(function() {
S("#date").datepicker();
};
</script>
Date: <input type="text" id="date">

The result can be seen in Figure 11.4, with the appearance being consistently controllable across all

browsers.

162

Date:

0 May 2018 0

Su Me Tu We Th Fr Sa

1 2 3 4 5

s 7] gl 10 11 12

13 14 15 16| 17| 18| 19

20 21| 22 23| 24| 25| 26
27 28| 29 30(31

Figure 11.4: JQuery Ul Date Picker.

11.3.3 Dialog Boxes

A Dialog Box, sometimes called a Modal Box, is a window that appears over the page like a popup box,
which can display more information to the user, or collect information from them. JavaScript has several popup
boxes, such as the alert box previously used during testing. Dialog boxes can be a useful part of the user

interface design, so being able to design attractive modals contributes to the user experience.

<html>
<head>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
<link rel="stylesheet" href="ui/jquery-ui.min.css">
<script src="https://code.jquery.com/jquery-1.12.4.js"></script>
<script src="https://code.jquery.com/ui/1.12.1/jquery-ui.js"></script>
<script>
S(document).ready(function() {
S("#appointment").click(function() {
S("#dialog").dialog();
1
1
</script>
</head>
<body>
<div id="appointment">Click here for details</div>
<div id="dialog" style="display:none">
<p>Web Programming Final Exam at 12:00pm</p>
</div>
</body>
</html>

163

The example on the previous page uses JQuery Ul to create a very simple dialogbox. To begin with the
page contains two divs — one that is visible, and a second that is invisible. When the user clicks on the first div,
the contents of the second div appear in an attractive dialog box. The code for creating the dialog box is a
simple call to the dialog() function when the appointment div is clicked. The result is a box that the user can

move around and resize as seen in Figure 11.5.

Click here for details

Web Programming Final Exam at
12:00pm

Figure 11.5: JQuery Ul Simple Dialog Box.

The example given here is a very simple dialog box, where only some fixed text is displayed. Using the
techniques discussed previously in this chapter, it isn’t difficult to change the contents of the dialog box,
including querying the database on the server to find the correct appointment information, or creating a form
where the user could edit the appointment information before posting new content to the server. By using a
dialog box, the user need not reload the page when creating new appointments and submitting them to the
database.

11.3.4 Draggables and Droppables

Another cool, yet simple, feature of the JQuery Ul library is the ability to allow the user to move
elements around the screen using their mouse. Throughout this book a calendar has been developed, similar
to the google calendar. One of the key features of that interface is being able to move appointments from one
day to another, or from one timeslot to another. This feature can be easily added using the JQuery Ul
draggables and droppables feature.

Figure 11.6: JQuery Ul Draggable and Droppable.

164

Any element in the browser can call the draggable() function and then be moved around the window
—in this example the black box is given the draggable ability. Other elements can call the droppable() function,
and then a further function be called when draggable elements are dropped on them — in this example the
grey box is given the droppable ability. Figure 11.6 shows the original layout, and in the following code an alert
is given when the black box is dropped onto the grey box. Of course, the drop event could call any function

involving any relevant updates.

<html>
<head>
<link rel="stylesheet" type="text/css" href="jquery-ui.css">
<script src="jquery.min.js"></script>
<script type="text/javascript" src="jquery-ui.min.js"></script>
<style type="text/css">

#draggable { width: 50px; height: 50px; background: black;}

#droppable { position: absolute; left: 100px; top: 100px; width: 55px; height: 55px; background: gray;}
</style>
<script>

S(document).ready(function() {
S("#draggable").draggable();
S("#droppable").droppable({
drop: function() { alert('dropped'); }
1
1

</script>
</head>
<body>
<div id="droppable"></div>
<div id="draggable"></div>
</body>
</html>

There are plenty more features included in the JQuery Ul library, such as an attractive way of sorting
a list of elements by dragging and dropping them into position. The features discussed here should enable you

to add some further features to your calendar.
Key Points

e Asynchronous JavaScript allows the browser to get updates from the server and change parts of the
page independently.

e An XMLHttpRequest object is used by the browser to send a request to the server.

e JQuery makes AJAX simpler using its load(), get() and post() methods.

e If those methods aren’t enough, the versatile ajax() method can be used.

165

e The JQuery Ul extension can be used to improve the user interface, it includes several features
including a date picker, dialog boxes, draggables and droppables.

Further Resources

1) The w3schools website has an introductions to JavaScript’s ajax, which can be found here:-
https://www.w3schools.com/js/js_ajax_intro.asp

2) The Jquery website has detailed description of all of its methods, including the ajax()
method, which can be found here:-
http://api.jquery.com/jquery.ajax/

3) JQuery Ul can be downloaded from the following link, along with full documentation of all
its features.

https://jqueryui.com/

Assignment

It’s time to add to the specification for a web-based calendar app. Similar to Google’s calendar, write
software that allows a user to keep track of their appointments.

New Features:-

e Users should be able to create appointments in a modal, (without reloading their webpage).

e Users should be able to edit and delete appointments in a modal, (without reloading their webpage).
e Users should be able to change an appointment by dragging it to a new time (or day).

e Users should be able to change the length of an appointment by dragging it.

166

Part 4

Modern Web Development Technologies

Chapter 12 Chapter 15
HTML 5 Express.js
Chapter 13 Chapter 16
Introducing Node.js Angular
Chapter 14

Node.js, MySQL & MongoDB

Web development is a fast-paced environment with new technologies emerging regularly — new
devices are connecting with new interfaces and more of those devices are mobile devices leading to
new challenges, including the challenge of Big Data. The earlier parts of this book have focused on
traditional, well established approaches to web development, using the *AMP stack. While much of the
existing web has been developed using those technologies, much new development is done using new
techniques and capabilities. This section introduces some of the features of the latest version of HTML
— HTML5 and then explores the MEAN development stack consisting of MongoDB, Express.js, Angular
and Node.js. JavaScript is a powerful language which is now powering both the client and the server.

167

Chapter 12

HTML 5

Objectives

This chapter introduces the new features that were added to HTML for version 5. In October 2014, the

World Wide Web Consortium (W3C) released the latest version of HTML, known as HTML5. The new release
includes new tags, and new capabilities, some of which are described in this chapter. While not all features of

HTMLS are compatible with all browsers, particularly users using outdated browsers, the capabilities described

here demonstrate the future of the web. After reading it you should:-

Be familiar with the new Semantic Elements included in HTML5

Understand how rich audio and video media should be included on a webpage

Be able to draw simple shapes onto the Canvas using JavaScript code

Be familiar with the new capabilities the Geolocation API offers

Understand how to use localStorage to store data in the browser

Be able to use a Web Worker to perform CPU intensive tasks in the background without interrupting
the user interface

Contents

12.1 New Tags (and Deprecated Tags
12.2 Audio & Video
12.3 The Canvas

12.4 Geolocation

12.5 Local Storage
12.6 Web Workers

168

HTML was originally defined in 1991, by Tim Berners-Lee, but clearly the world of the web has
massively changed since the early years. While early websites were plain and largely text based, today web
programs are rich in varied media from videos to games. Early websites were displayed on primitive machines,
while now we access the web using a variety of different types of powerful devices from laptops to mobile
phones and tablets. Clearly HTML remains a fundamental language and so in October 2014 the World Wide
Web Consortium (W3C) released the latest version of HTML, known as HTML5. All modern browsers support
HTMLS5, but while the language is specified by W3C, some features are yet to be adopted by some browsers,
so even several years later there are some compatibility issues to be aware of. This chapter will investigate
some of the key features of HTML5.

12.1 New Tags (and Deprecated Tags)

Because there have been many different versions of HTML, it is important to instruct the browser
which type of document it is displaying, which is done with a doctype declaration — which needs to be the first
line of your page, before the opening <html> tags. Previously the doctype declaration was more complicated,
but with HTMLS5, this is much simpler.

<IDOCTYPE html>

Technically this is not new and also not a tag, it is an instruction to the browser so it knows how to
render the page, strictly following the specification to ensure the page is displayed how the developer intended
it to. It might be tempting to forget to add the doctype declaration, as it may appear to make no difference to
how the page appears in your browser, however a different browser version may switch to quirks mode (rather

than standards mode) and may not be able to display your page exactly as intended.

Also at the beginning of a document, the character encoding (or charset) of that document should be
specified. Again. Over the years different character encodings have been developed, from ASCII, ISO-8859-1,
ANSI to UTF-8. Previously this was specified by a complex meta tag, which in HTML5 has again been simplified.
UTF-8 is the default character encoding for HTML5, and should be declared with the following command
immediately after the <head> tag is opened.

<meta charset="UTF-8">

Therefore the standard structure to a page in HTML5 is as follows.

<IDOCTYPE html>
<html>

<head>

<meta charset="UTF-8">
<title>Page Title</title>
</head>

<body>

</body>

</html>

169

12.1.1 New Semantic Elements

Over recent decades there has been much discussion about developing a semantic web, where data is
structured so that machines can directly read it. HTML5 has introduced some new semantic elements or tags
to better describe the different parts of a webpage. Semantic elements are those that convey some meaning
both to a browser and a developer, for example the <form> tag clearly defines what is inside it, whereas the
<div> tag says nothing about its contents. Traditionally developers identify parts of their page using tags such
as <div class="header”> or <div class="nav”>, HTML5 has created consistency with some new semantic tags,
such as <header> and <nav>. These semantic tags can be styled using CSS much like elements that have a class
selector, the difference is that the intention behind semantic elements is to make it easier for a machine to

understand the different parts of a page, enabling it to reuse data across different applications.

Header
Nav
e Y)
Section
'._ -/J Iﬂiﬁide
¢ ™y
Article
s A
Footer

Figure 12.1: Sample Layout of Semantic Elements

Figure 12.1 shows a sample layout of semantic elements with some of the key tags showed. Since they
are designed to be semantic tags, most should be self-explanatory, nonetheless table 12.1 shows a list of the
new semantic tags along with a description. Note the relationships between some of these elements, for
example a <summary> element contains a brief header to a <details> element, while a <figcaption> element
provides the caption for a <figure> element. There is also a relationship between the <article> element and the
<section> element, as a section may contain several articles, whilst an article may contain several sections. The
<header> and <footer> elements may refer to the header (or footer) of an entire page, or just to the opening
and closing of a particular article or section. While this might seem confusing, the intention is that the new tags
add more meaning to the content than simply <div> or tags. As these tags are relatively new, it is worth

monitoring the source of some of your favourite websites to see how they are adopted.

170

Tag Description

<article> For articles

<aside> Other content apart from the page content
<details> Additional details that can be hidden from a <summary> element
<figcaption> | A caption for a <figure> element

<figure> A figure (diagram, photo, illustration etc.)
<footer> The closing section of a page (or section)
<header> The opening section of a page (or section)
<main> For specifying the main part of a document
<mark> For highlighting part of the text

<nav> For navigation links

<section> For a section in the content

<summary> | A visible heading for a <details> element
<time> For defining dates or times

Table 12.1 HTML5 Semantic Elements

12.1.2 New Input Types

Prior to HTMLS5, there were several input types available for form input, including text, password, radio
(buttons), checkboxes, and then submit and reset buttons. HTML5 adds to this list with further input types,
which can make form validation easier, by trapping input errors, and also improve the user experience. For
each of the following input types, if they are not supported by the browser, they will simply be replaced with

a text box input.

| <input type="color" value = "#bbbbbb">

The color input type shows a palette for the user to choose from as in Figure 12.2.

Color

=

Basic colors:

EEEEN
EEEN 1]

[

usto lars:

3
0
=]

EEENETT
EN EEEEREN
BN NEEEERT]
Al ''EENEN
EEl HEEERENT
BN EEEET

Define Custom Colors =3

s

l

Hue: Iﬂl Bed:
sat:[0 | Green
ColoriSolid |, - e

Add to Custom Colors

Cancel

Figure 12.2: The Color Input Type

171

The previous chapter introduced the date input type with a drop down menu to choose from and
discussed the HTML5 version. A further HTMLS feature for several input types is to allow min and max

attributes to restrict the range of choices available.

<input type="date" min="1950-01-01" max="2018-12-31">

Related input types include “datetime-local”, which allows the time to be input as well as the date,
“month”, which allows the user to select a month and year and “week”, which allows the user to select a week
and year. The “email” and “url” input types have been improved to ensure a valid input is given, for example
an email should contain an “@”, and an appropriate error message is given when the input doesn’t conform.

Finally the “range” input type allows the user to input their score using a slider control.

<input type="range" name="score" min="0" max="10">

While features like this could be implemented using JavaScript, HTMLS5 includes them as part of their

specification.

Figure 12.3: The Range Input Type

Further new HTMLS5 tags have been introduced for dealing with rich media, such as <audio>, <video>

and the <canvas>, but these will be discussed in more detail in the following sections.
12.1.3 Deprecated Tags

The support for some tags has been removed in HTMLS5, largely as they have been replaced by better
methods. To begin with the <frame>, <frameset> and <noframes> tags have been removed, as discussed in the
previous chapter, AJAX provides a much superior way of controlling different parts of the page asynchronously.
Also, several tags that are just concerned with style have been removed, as CSS is the standard way of managing
the style of a page. These tags include <basefont>, <big>, <center>, , <strike> and <tt>, so clearly these

tags should be avoided as future browsers will not be able to display them.
12.2 Audio & Video

Prior to HTML5, embedding audio and video into websites wasn’t ideal as it generally involved using a
plugin, like Adobe’s Flash. This meant that the browser wasn’t able to play the content itself, instead users
needed to download a proprietary player, which while free to download made the experience not seamless.
Creating websites using Flash was for a while an alternative to the HTML, CSS, JavaScript methods discussed in
this book, and in many ways it was easier to develop flashy looking websites using Flash, however the tools
needed were expensive. HTML5 has sometimes been touted as the death of Flash, and the popularity of open
tools has resulted in the gradual removal of Flash from the web. Other alternatives include some JavaScript
media players, but the introduction of the HTML5 <audio> and <video> tags have made integrating rich media

into websites much easier.

The <audio> tag makes it easy to play music and other sounds directly from the browser and is

supported by most modern browsers. There are a couple of key parts to adding audio to a website, first adding

172

the controls attribute to the audio tag adds buttons like play and pause, secondly the source of the audio needs
to be specified, depending on what type of audio it is.

<audio controls>
<source src="music.mp3" type="audio/mpeg">
<source src="music.ogg" type="audio/ogg">
Audio Not Supported.

</audio>

Unfortunately not all browsers support the same type of audio formats, so often more than one audio
file needs to be specified in different formats, however MP3 appears to be better supported than wav or ogg.
Adding controls to the audio tag results in the appearance such as in Figure 12.4.

B 00000t @—— o) —@ ¥
Figure 12.4: Audio Playback Controls

The <video> tag works in a similar way, except that it is always a good idea to specify the height and
width parameters of the video window. There is also the option of adding the autoplay attribute to make the
video start straightaway.

<video width="320" height="240" controls autoplay>
<source src="movie.mp4" type="audio/mp4">
<source src="movie.ogg" type="audio/ogg">
Video Not Supported.

</audio>

Once again, not all video formats are supported by all browsers, with the choices being MP4, WebM
and ogg, with MP4 being the best supported. The controls for video playback are similar to audio as can be
seen in Figure 12.5.

P 000 @—— v —e I ¥

Figure 12.5: Video Playback Controls

Both the <audio> and <video> tags interact with the DOM, allowing them to be edited using JavaScript,

for example using the play() or pause() methods to start or pause the media.
12.3 The Canvas

The <canvas> tag provides a space where graphics can be drawn onto a page. JavaScript can then be
used to dynamically draw onto the canvas a variety of shapes and effects. Rather than placing a static image
onto a page, the canvas allows designers to draw graphs, graphics, games and other visuals, on the fly, in real
time. The canvas therefore can be used to create interesting ways of presenting data or advertising, and with
the JavaScript interactions animations and games can also be built. Prior to HTMLS5, again this was the domain

173

of Flash, where users would need to download external software to play the Flash animation, by using the

canvas users can access such animations directly in their browser.

The <canvas> itself is just a blank space, and JavaScript can then be used to draw onto the space. This section
will therefore only introduce some very basic examples of its use with interested readers encouraged to
investigate further the use of the canvas for building games and other rich multimedia. It is worth noting that
another tag <svg> is a container for creating scalable vector graphics which may be an alternative. The simplest
<canvas> tag involves setting the width and height of it, in this example a border is also set, while any text

inside the canvas element will only be displayed on browsers that don’t support HTMLS.

<canvas id="canvas1" width="400" height="250" style="border:1px black solid">
This is a canvas element, you need HTML5!

</canvas>

This would display a plain empty canvas with height 250 pixels, width 400 pixels, and a border around
it. The next step is to use JavaScript to draw onto it.

<script>

S(document).ready(function(){
canvas = S('#canvas1')[0];
context = canvas.getContext('2d');
context.moveTo(20,50);
context.lineTo(380,150);
context.stroke();

};

</script>

In this example, first the canvas element is selected, and then the context set to 2 dimensional, rather
than 3 dimensional. A line is then drawn from pixel (20,50) to pixel (380,150), resulting in Figure 12.6.

Figure 12.6: Simple Line Drawn onto Canvas

As well as the moveTo(), lineTo() and stroke() methods, the canvas, via JavaScript, has plenty of

methods allowing the creation of any variety of shapes using code, including circles, as in this second example,

174

where replacing the last 3 lines of the previous example as follows, draws a red circle in the middle of the
canvas like the Japanese Flag shown in Figure 12.7.

context.fillStyle = 'red’;

context.beginPath();

context.moveTo(200, 125);

context.arc(200, 125, 70, 0, Math.PI * 2, false);
context.closePath();

context.fill();

Figure 12.7: The Japanese Flag drawn onto Canvas

There are a variety of ways to draw a Thai Flag, one of which would be as follows.

S(canvas).css("background", "white");
context.fillStyle = 'red’;
context.fillRect(0, 0, 400, 250);
context.clearRect(0, 42, 400, 168);
context.fillStyle = 'blue’;
context.fillRect(0, 84, 400, 84);

In this example, the full space is filled red, before a white rectangle cleared in the middle. Finally the
blue central band is placed on top.

175

Figure 12.8: The Thai Flag drawn onto Canvas

In these examples the shapes were filled with solid colour, but it is easy to create a gradient between
the colours as in the next example where the colour shades from black to white, from the top left corner to
the bottom right corner.

gradient = context.createlinearGradient(0, 0, 400, 250);
gradient.addColorStop(0, 'black’);
gradient.addColorStop(1, 'white');

context.fillStyle = gradient;

context.fillRect(0, 0, 400, 250);

This results in the graphic in Figure 12.9.

Figure 12.9: A Gradient Using the Canvas

176

This section has just introduced some of the basics of the HTML5 canvas, as it has much potential
beyond the scope of this book. At very least it intends to become an alternative to Flash for rich graphics and

multimedia.
12.4 Geolocation

Given that more and more users access the web via mobile devices, support for mobile services was
an essential feature added into HTML5. Therefore the Geolocation APl is there to get the longitude and latitude
of a user. Clearly there are privacy and security issues with using geolocation, so the user’s permission is needed
before accessing it. Assuming permission is granted, geolocation can be linked with mapping software, such as
Google Maps, and location dependent services offered. In this example, the user’s location is requested and a

map displayed.

<IDOCTYPE html>
<html><head>
<meta charset="UTF-8">
<title>Geolocation</title>
<script src="jquery-1.11.1.min.js"></script>
<script src="https://maps.googleapis.com/maps/api/js?sensor=false"></script>
</head><body>
<div id='status'></div>
<div id="map'></div>
<script>
S(document).ready(function(){
if (typeof navigator.geolocation == 'undefined')
alert("Geolocation not supported.")
else
navigator.geolocation.getCurrentPosition(granted, denied)
function granted(position) {
S('#status').innerHTML = 'Permission Granted'
S('#map').css("border", "1px solid black")
S('‘#map').css("width", "640px")
S('#map').css("height", "320px")
var lat = position.coords.latitude
var long = position.coords.longitude
var gmap = S('#map')[0]
var gopts = {
center: new google.maps.LatLng(lat, long),
zoom: 9, mapTypeld: google.maps.MapTypeld.ROADMAP }
var map = new google.maps.Map(gmap, gopts)
}

function denied(error) {

177

var message
switch(error.code) {
case 1: message = 'Permission Denied'; break;
case 2: message = 'Position Unavailable'; break;
case 3: message = 'Operation Timed Out'; break;
case 4: message = 'Unknown Error'; break;
}
S('#status').innerHTML = message
}
1;
</script>
</body>
</html>

This fairly standard example requests the users permission, and if granted displays a Google Map of
their location, as in Figure 12.10. The Google Maps API offers a much larger range of features such as placing a

pin on the user’s precise location, or highlighting nearby attractions.

GRTERIT] =
" . Khun Chae r "3
ap Satellite Mational Park L4
0 E T W19
b
Chiang Mai
LT E':'L 13 ‘A'EI'I‘S &=
Dai Inthanon R :
Mational Park
; “_I_ _I* H'flilli.il\rg;l ¥
SE B Dai Khun_ Tan
Mational Park -
B FIETHELLTA 2004
m @ BRI LE TR
GD Qle - Map data ©2018 Google Terms of Use Repart 8 map emor

Figure 12.10: Google Map Powered By Geolocation

12.5 Local Storage

HTMLS has also transformed cookies, allowing more data to be stored more securely on the client
machine within the browser. The data storage limit is higher, and data isn’t transferred to the server. Local
storage can either store data indefinitely or for the duration of a session depending on whether it uses

window.localStorage or window.sessionStorage.

178

<div id="'set'>Set</div>
<div id='unset'>Unset</div>
<script>
S(document).ready(function(){
S("#set").click(function() {
localStorage.setltem('username’, 'ken')
localStorage.setltem('password’, 'pass')
1
S("#unset").click(function() {
localStorage.removeltem('username')
localStorage.removeltem('password')
1;
1;

</script>);

In this example a username and password are stored locally in the localStorage, which can be viewed
through the browsers developer tools. If the user clicks on “Set” the data is stored, and when they click on
“Unset” the data is removed. Figure 12.11 shows a screenshot of the developer tools after “Set” has been
clicked. Note that for security reasons this demo needs to be run on a server, in this case via the localhost.

- (i} Local Storage Example X

“« > G o @ 127.0.0.1/html5/Local3.html s P Search i 0 =

Set
Unset

[L[Inspectc B Consol [Debugge {} StyleEditc (@ Performanc # Memor = MNetwor S Sterag -5 B & 0 & X

£ Cache Storage + Filter items
& Cookies Key - Value

& Indexed DB password pass

& Local Storage username ken

€3 hitp://127.00.1

£ Session Storage

Figure 12.11: Local Storage

This example used Local Storage, which allows a lot more space to be available than traditional cookies,
while cookies must be less than 4KB, Local Storage allows up to 5MB of data. The other alternative would be
to use Session Storage, which as the name implies, means the data will exist for the duration of the session,
until the browser window or tab is closed, while Local Storage persists indefinitely until the browser cache is

cleared or the data is removed through JavaScript.

179

12.6 Web Workers

One of the problems with JavaScript involves concurrency as JavaScript is a single threaded
environment, which means multiple scripts can’t run simultaneously. Suppose the page needs to manipulate
the DOM, handle Ul events and process a large amount of data, unfortunately these tasks can’t happen at the
same time as one script may block another script from running. Fortunately HTML5 has added Web Workers,
which allow scripts to be run in the background without hindering other scripts. Workers use message passing
to send instructions to another thread for parsing, which is particularly useful when there are CPU intensive
tasks needing to be run. In the following example a Web Worker is set up to calculate the factorial of a number.
In reality, this is quite a trivial problem and a Web Worker wouldn’t be necessary, so it is only intended as a
demonstration of how Web Workers work, and how it could be applied to more complex problems such as

retrieving and processing large amounts of data from the server, image processing, or mining Bitcoins.

In this example, the first step is to create a simple input form and a div to display the answer.

<input type="number" id="input">

<div id="answer"></div>

A Web Worker works by sending a message to a separate JavaScript file, in this case a file called
‘worker.js’. This file will send responses when it is finished, without blocking JavaScript from continuing to run
on the main page. The JavaScript begins by checking if the browser is compliant and capable of creating a
worker. If so, a new Worker object is created with the specified JavaScript file. When the value in the input box
changes a message is passed to the Worker using the postMessage() function. Finally an event listener is
created to handle when the Worker sends its response. When the worker responds, the answer div is updated
with the result.

if(window.Worker){
var myWorker = new Worker('worker.js');
S("#input").change(function() {
myWorker.postMessage(S("#input").val());
};
myWorker.addEventListener('message’, function(e) {
S("#answer").text(e.data);
}, false);
}

The worker.js file for this example receives the value from the input box, and uses a simple recursive
function to calculate the factorial, and returns the result using the postMessage() method.

onmessage = function(e) {
var workerResult = 'Factorial: ' + fact(e.data);
postMessage(workerResult);

}

function fact(input){

180

if(input<2){
return 1;
}
else{
return fact(input-1)*input;
}
Halse);

}

The resulting page looks similar to Figure 12.12, but the calculation of the factorial is not being done

on the page, and the result will be updated each time the Worker responds.

7 -
Factorial: 5040

Figure 12.12: A Simple Web Worker

Web Workers can have a big impact on web application performance, and Web Workers can also
invoke further Web Workers as well as making use of the XMLHttpRequest object. However, Web Workers
are not able to access the DOM and make direct changes to a page, instead they should be considered a

separate machine where work can be sent.
Key Points

e HTMLS is the latest HTML specification released in 2014 — a major update intended to catch up with

the way the web has evolved.

The new standard has some additional tags, including semantic tags designed to inform the machine
what kind of data it is displaying, such as a header, footer, navigation, or the main section or article.

Input types have improved to support different kinds of input.

Rich media, such as audio and video, gains new support, removing the need for using browser plugins
such as Flash.

e The canvas provides a space where graphics can be drawn, using code.

Geolocation supports a mobile users allowing location based applications.

Local Storage has transformed how cookies are used to store data on the client machine.

e Web Workers facilitate code to run in the background on the client browser.
Further Resources

1) W3C schools has an excellent introduction to the new features of HTMLS. It can be found here:-
https://www.w3schools.com/html/html5_intro.asp
2) Web Fundamentals (formerly HTML5rocks) is a project run by google containing collection of
tutorials, guides and best practices for futuristic webapps. It can be found here:-

https://developers.google.com/web/

181

3) Caniuse (Can | Use) is a useful site that shows the varying browser support for different features of
HTMLS. It can be found here:-

https://caniuse.com/

Assignment

Improve your calendar by allowing the user to choose different colours for different types of
appointments. Allow users to share their calendar with friends and colleagues, and have their colleagues

appointments appear in different colours. Senior users should be able to allow their secretaries to manage
their appointments (create, edit etc.).

182

Chapter 13

Introducing Node.js

Objectives

This chapter begins introducing more modern web development techniques, and the MEAN
(MongoDB, Express.js, Angular, Node.js) as an alternative to the traditional WAMP stack. Node.js is a free, open
source, server-side environment offering an alternative to PHP, where JavaScript can be used throughout the
stack. After reading this chapter you should:

e Understand the differences between Node.js and PHP.

e Be able to set up a Node.js environment.

e Parse URLs and handle basic routing using Node.js.

e Understand how server side events can be handled by Node.js.

e Beable to use the Node Package Manager (NPM) to add existing packages to a project.

e Send emails via Node.js.

Contents

13.1 PHP vs Node.js

13.2 Setting up Node.js

13.3 Events in Node.js

13.4 Node Package Manager (NPM)
13.5 Sending Emails with Node.js

183

So far this book has focused on the traditional server side technology stack of LAMP (or WAMP, or
MAMP), meaning the operating system and then Apache, MySQL and PHP. This is a stable, reliable stack which
powers a large portion of the web, with as much as 80% of websites running on PHP. This is perhaps due to the
large number of applications built using PHP, including Content Management Systems (CMS) such as
WordPress, Drupal and Joomla, with WordPress powering as much as 30% of the web. The most popular E-
Commerce platforms such as WooCommerce, Magento and ZenCart are all written in PHP, and a variety of
MVC (Model View Controller) Frameworks are popular using PHP, such as Laravel, Symfony, Codelgniter,
CakePHP and the Zend Framework. PHP will remain a very popular server side solution for the foreseeable
future, however there is growing support for “JavaScript Everywhere”, with the capability of using JavaScript

on the server as well, through the Node.js environment.

Node.js is a free, open source, server-side run-time environment for
executing JavaScript on the server, allowing developers to use the same

language on both the client and server.

Node.js is a free, open source, server-side run-time environment for executing JavaScript on the
server, allowing developers to use the same language on both the client and server. One of the key advantages
Node.js offers is handling requests without blocking. A common web server request is to retrieve a file and
return the contents to the client machine. Using PHP (or ASP), this request generally takes a few steps;

1) Send the request to the server file system
2) Wait for the file system to open and read the file
3) Return the content to the client

4) Ready for another request
Node.js handles this crucially in a different way.

1) Send the request to the server file system
2) Ready to handle another request
3) When the file system has opened the file, the server sends the content to the client

Node.js eliminates the waiting between requests and is available to handle other requests. There are

plenty of other differences that Node.js brings, making Node.js very important for modern web developers.
13.1 PHP vs Node.js

For a long time PHP and JavaScript have worked well together, with PHP managing the server and
JavaScript managing the client, however since running JavaScript on the server became a possibility, the two
languages have become alternatives for each other. PHP was created by Rasmus Lerdorf in 1994 and became
the most popular server side language, powering many sites. Node.js is much more recent initially launched in

2009, but has rapidly gained popularity since then as an alternative choice to PHP. Both have advantages and

184

disadvantages, and as with many scenarios where developers have a choice between two languages, you will
find staunch defenders of both and heated debate as to which is better.

The biggest selling point for Node.js is that it is asynchronous and non-blocking allowing it to service
multiple concurrent events and various benchmark tests have demonstrated that Node.js is faster than PHP,
even when using Facebook’s HHVM. As server response times are vital, this is a major advantage. A second
advantage is that using Node.js means only having one consistent programming language (JavaScript
Everywhere), and data can be seamlessly moved between machines using JSON (JavaScript Object Notation),

rather than developers needing to use different syntax in different places.

Node.js also boasts the NPM, a package manager, or large code repository, allowing developers to
access a large ecosystem of open source libraries. While many of these packages are stable, core libraries, there
are also many third party contributions, which are comparatively immature. Sometimes it can be difficult to
assess the quality of the reusable code, and version inconsistencies along with complex code dependencies can
lead to unexpected bugs and trickier code maintenance. On the other hand, as the code is newer it has been
built with the latest architectural considerations in mind, such as Model View Controller (MVC). It is also better
suited to state-of-the art features such as HTMLS5.

In comparison, PHP has a large, rich codebase with time tested code contributed by a large,
experienced community. It was originally designed for being used on webservers and has evolved and updated
over the years, working neatly alongside MySQL. There is a well-established hosting infrastructure in place,
making it quick to get a project up and running, particularly when using a complete solution such as WordPress.
Within PHP it is easy to switch between the content and the programming logic, by simply opening PHP tags
when code is needed — whilst this is easy to do, unfortunately it leads to a poor separation of concerns making

it harder to maintain.

Both PHP and Node.js have their supporters, and advantages and disadvantages, so both are likely to

remain important components of web development for the foreseeable future.
13.2 Setting up Node.js

As with other programming challenges, the first step is to get “Hello World” to work, and make sure
the environment is up and running. As with Wampserver, you can set up Node.js for testing on your local
machine and have it run like the server — the first step is to download and install the latest version of Node.js
from https://nodejs.org. Then create your first .js file as follows saving it as hello.js in a new directory on your

machine.

var http = require('http');
http.createServer(function (req, res) {
res.write('Hello World');
res.end();
}).listen(8080);

The code instructs the server to output “Hello World” when a web browser accesses it using port 8080,
but first it needs to be initiated by Node.js. To do this, open the command line interface, either through the

185

Node.js command prompt, or your system Command Prompt. Navigate to your new directory and type “node
hello.js” to initiate Node.js.

BN Modejs command prompt - node hellojs

and npm.

C:\ww>node hello.js

Figure 13.1: Initiating Node.js in the Command Prompt

Now when your computer is accessed via port 8080, Node.js with return a Hello World message. You

can test this in your browser window by opening localhost:8080.

localhost: 8080/ b4

<« C | @ localhost:aC v e P2 N =

Hello World

Figure 13.2: Hello World by Node.js

Let’s examine the code in more detail to find out what how it works. The first line requires the inclusion
of a built in Node.js module called ‘http’.

var http = require('http');

Modules are much like JavaScript libraries, where useful functions can be stored. The ‘http’ module is
one of the built in modules which contains useful http functionality that can be used to build a webserver. As
well as the built in Node.js modules, you can create and require your own modules, or find modules that others
have released to the npm. Having included the http module, a server can then be created.

http.createServer(function (req, res) {
res.write('Hello World');
res.end();

}).listen(8080);

186

The createServer() method is called to create a HTTP Server object and turn the machine into a HTTP
server. In this case the HTTP Server object is instructed to listen to port 8080. The object is passed as a
parameter a requestListener() function which is executed whenever the server gets a request. This function
contains two parameters, the request (req) and the response (res). The request parameter will contain things
like the request method and the url. In this simplest of examples, the write() method is used to add the text
“Hello World” to the response, and then the end() method is used to indicate that the response is complete
and can be returned. The next example extends the previous example by first using the writeHead() method
to first set the status code to be 200 (or OK), and add a response header to indicate the response is to be
displayed as HTML. This time rather than outputting “Hello World”, the rest of the URL is displayed instead.

var http = require('http');

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/html'});
res.write(req.url);
res.end();

}).listen(8080);

This will be displayed as in Figure 13.3, but clearly when the URL changes, the output will also

change. Remember to initiate the new file using the command prompt.

lecalhost:3080/January X

<« C | @ localhost:3080/)anuary e 2B =

/Tanuary

Figure 13.3: Extracting the URL in Node.js

Node.js also has a useful ‘url’ module, which can break up a url, extracting the host name, the
pathname and any query parameters. After requiring the url module, the parse() method can be used to break
it up, creating an object with the various parts of the url. The query part of the url can be returned either using

search, or as a JavaScript object using query, as shown in the following example.

187

var http = require('http');

var url = require('url');

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/html'});
var myURL = url.parse(req.url, true);
res.write("Pathname: " + myURL.pathname + "
");
res.write("Search: " + myURL.search + "
");
var myURLData = myURL.query;
res.write("Query: " + myURLData.month);
res.end();

}).listen(8080);

Given the url http://localhost:8080/index.html?month=January, the following would be displayed.

- localhost: 23080/ index. htmlfmonth= X

<« @ | @ localhost:8080/inc

Pathname: /index html
Search: Pmonth=January
Query: January

Figure 13.4: Parsing the URL in Node.js

Now that we can parse the URL, the next step is to set up the machine as a fileserver, that can return
different pages based on the contents of the url. To do this, we require the file system module, or “fs”. The file
system module can read, create, update, delete and rename files on the server, with the important part here
being to read and return a file using the readFile() method. This this next example, the url is parsed to find the
pathname so that a file can be specified — in this case the file should be in the same directory. The readFile()
method is then used to try to read in data from the file. If there is an error, and the file can’t be found, the a
404 error is returned to the browser. On the other hand, if the file is located, its contents are sent back to the
browser. In this way, Node.js is now set up as a web server, handling requests to the machine, locating the

requested files and returning them, while managing errors if an incorrect url is requested.

188

var http = require('http');
var url = require('url');
var fs = require('fs');
http.createServer(function (req, res) {
var myURL = url.parse(req.url, true);
var file = "." + myURL.pathname;
fs.readFile(file, function(err, data) {
if(err) {
res.writeHead(404, {'Content-Type': 'text/html'});
return res.end("404 Nothing Found Here");
}
res.writeHead(200, {'Content-Type': 'text/html'});
res.write(data);
return res.end();
};
}).listen(8080););

13.3 Events in Node.js

In JQuery we saw how JavaScript is used to handle browser events, such as a mouse click or keyboard
press. Event Driven Programming is important whether in the browser or on the server, and Node.js has an
events module to assist with managing events on the server. Many events can be fired on the server, such as
when a file is opened for reading. Event Handlers can be created to managed events such as this, and an Event
Emitter can be used to monitor events, while the Emit() method can be used to fire events. To use Node.js

events, the built in ‘events’ module is required.

var events = require('events');

var eventEmitter = new events.EventEmitter();

var myEventHandler = function () {
console.log('Do Something');

}

eventEmitter.on('Go', myEventHandler);

eventEmitter.emit('Go');

In this example an EventEmitter object is created. A handler (myEventHandler) function is written to
log a simple statement in the console. The EventEmitter then associates the event handler with the ‘Go’ event.
Finally the eventEmitter calls the emit() method to fire the ‘Go’ event. Figure 13.5 shows what happens when

the code is initiated in the Node.js Command Prompt.

C:\www>node event.js

o Something

Figure 13.5: A Console Log Event in Node.js

189

To give a clearer example of how this event handling might be useful, consider a group chat room
where users can join and leave. The chats will be handled by the server, but it would be useful to alert other
group members when users join or leave the room. This example assumes that an alertUsers() function has

been written, and is triggered by either the userJoin or userLeft event.

var events = require(‘events');
var chatEvents = new events.EventEmitter;
function userJoin(username){
alertUsers('User ' + username + ' has entered.');
}
function userLeft(username){
alertUsers('User ' + username + ' has left.');
}
chatEvents.on('userJoin', userJoin);

chatEvents.on('userLeft', userLeft);

The remaining step is to create a trigger for the userJoin and userLeft events, by adding the emit

method call to the login and logout functions, as follows.

function login(username){
chatEvents.emit('userJoin', username);

}

function logout(username){
chatEvents.emit('userLeft', username);

}

The examples above have demonstrated that the Node.js EventEmitter has several methods,
demonstrating the key on() and emit() methods. There are also methods to remove listeners from reacting to

events.
13.4 Node Package Manager (NPM)

The NPM is a package manager for Node.JS packages or modules. As well as the core modules, some
of which we have discussed already, there are thousands of contributed modules which can be easily
incorporated into a project. When you installed Node.JS you automatically got access to the package manager,
which makes it easy to include more modules in your website. You can search for modules to include at
www.npmjs.com. Suppose we wanted to convert numbers into fractions — one option would be to write our
own module to solve this problem, but a better option would be to search the NPM to reuse someone else’s
existing solution.

190

num2fraction

~ . . P
Convert number to fraction q
m
fraction number math maths arithmetic god rational
_— ..
* # # ¥isi

Fuais published 3yearsago @1.2.2

Figure 13.6: Sample Module from NPM

Figure 13.5 shows a screen shot of a possible module included in the NPM. As well as giving a brief
description, it also gives some guidance about the quality of the module. In this case the bars on the right of
the screen suggest the popularity is 45%, the quality is 97% and the maintenance is 100%. Selecting the module
provides more information about how to use it, and information about any dependencies or dependents the
module may have. In the case of num2fraction, there are no Dependencies, so we don’t need any further
modules to make it work. There are however 17 Dependents, modules which rely on num2fraction to work.

num2fraction public

Readme 0 Dependencies 17 Dependents 6 Versions

Figure 13.7: The numZ2fraction Module

Having selected a module, the next step is to use npm to install it, using the Node.js command prompt.

For this module type:-

C:\ww>npm install num2fraction

At this stage you may get some warning messages, but wait for a few moments for the module to
download and set up and then you should notice some additional parts to your working directory. Firstly a new
directory is created called node_modules, and this is where all future modules will be installed. If you open this
directory, you'll notice the num2fraction module is already there in its own directory. A package-lock.json file
has also been added to the main working directory. This is there to help maintain consistency as your project

grows. For now we want to test the num2fraction module.

var http = require('http');

var n2f = require('num2fraction’);

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/html'});
res.write(n2f(0.5));
res.end();

}).listen(8080);

191

In this code we require the num2fraction module, and then write n2f(0.5) to the screen. As expected

the following should appear.

localhost: 8080/ x

< C' | @ localhost:8080 e | » =

172

Figure 13.8: Demonstrating the num2fraction Module

13.5 Sending Emails with Node.js

Node.js also makes it fairly easy to set your machine up as an email server. The first step is to install

the nodemailer module via the npm using the following command.

C:%ww>npm install nodemailer

The following code is a fairly standard example of how to send an email from a gmail account. Clearly
the username and password would need to be edited, along with the subject, text and to fields. Beyond that,

the example is fairly straightforward.

var http = require('http');
var nodemailer = require('nodemailer');
var transporter = nodemailer.createTransport({
service: 'gmail’,
auth: {
user: 'myemail@gmail.com’,
pass: 'secretpass’
}
1;
var mailOptions = {
from: 'myemail@gmail.com’,
to: ' myfriend@yahoo.com’,
subject: 'Welcome to the web',
text: 'Feel free to explore!'

|5

192

transporter.sendMail(mailOptions, function(error, info){
if (error) {
console.log(error);
} else {

console.log('Email sent: ' + info.response);

}
N

Key Points

e Node.js is a popular, modern server-side runtime environment written in JavaScript, which is fast due
to its ability to handle requests without blocking.

Node.js can be used to handle Http requests, by creating a server and parsing the requested URL.

Node.js can be set up as a file server to return different files depending on the Http request.

The emit() method can be used to respond to server-side events, such as when a user enters or leaves

a chat room.
The Node Package Manager (or NPM) is a large collection of modules of code that are publicly available

and easily installed using npm.
Further Resources

1) Node.js can be downloaded from the following link, which also has complete documentation.
https://nodejs.org/en/

2) Lots of information about available modules in the npm can be found here.
https://docs.npmjs.com/

3) Wa3schools offers an introductory tutorial to Node.js here.
https://www.w3schools.com/nodejs/nodejs_intro.asp

Assignment

Set up a simple Node.js environment where a user is directed to different pages based on the
parameters in their url. Make sure you are set up to use the Node Package Manager as it will be necessary in
subsequent chapters.

193

Chapter 14

Node.js, MySQL & MongoDB

Objectives

This chapter continues discussing the use of Node.js as the server-side scripting language. While the
previous chapter introduced using Node.js to manage the server’s filesystem, a database is normally a crucial
part of most web applications. This chapter introduces how Node.js can work alongside a MySQL database,
and also introduces MongoDB, a NoSQL database that is growing in popularity. The uses of both alternatives
are discussed, as well as a comparison between them. After reading this chapter you should:

e Be able to perform basic operations on a MySQL database using Node.js (create, insert, retrieve).
e Understand the differences between MySQL and MongoDB.

e Be able to perform basic operations on a MongoDB database using Node.js.

Contents

14.1 Node.js & MySQL
14.2 Node.js & MongoDB
14.3 MySQL vs MongoDB

194

With Node.js powering the server, as well as managing the file system, it also needs to work alongside
a database. Previously, in chapter 6, we explored using PHP alongside a MySQL. This chapter demonstrates
first using Node.js as the scripting language for accessing a MySQL database, and then later using MongoDB as

a document store instead. A comparison of both database platforms is also discussed.
14.1 Node.js & MySQL

MySQL is a popular open source relational database management system, which has become areliable
choice since its initial release in 1995. Today it remains a core component of the LAMP stack (as discussed
previously), as well as being the database used in Wordpress, Drupal, Joomla and many other key web
applications. As seen in chapter 6, MySQL stores data in tables of similar types of data, with perhaps a table
for users and another table for appointments. The user table would then store a collection of records about
each user, with a record comprising of several fields, such as id, username, password etc. MySQL works the
same way with Node.js, we just use Node.js to access it.

14.1.1 Connecting to MySQL

The first step is to download the latest version of MySQL from https://www.mysqgl.com/downloads/.

Once you've installed it on your machine, you can access it via Node.js. To do so, a mysql driver is required,

which can be done by downloading and installing the mysgl module using the NPM and the command terminal.

C:vwwwenpm install mysgl

Once installed, Node requires this module in its file to allow access to further functions, such as the
createConnection() function.

const mysgl = require('mysql');
const connection = mysql.createConnection({
host: 'localhost’,
user: 'root’,
password: 'XXxxxxxx'
1;
connection.connect(function(err) {
if (err) throw err;
console.log("Connected!");
connection.query("CREATE DATABASE calendar", function (err, result) {
if (err) throw err;
console.log("Database created");
1
1;

This example creates a connection to the database to make sure it is set up correctly. If there is a
problem with the setup, an error will be displayed in the command prompt to help you fix the problem. The
createConnection() function sets up the host, username and password for the connection, which obviously
need to edited. Here a database can also be specified, but in this example no database has been created yet.

195

In this example, once the connection is established using the connect() function, a query is executed to create

a database called calendar. Running this script in the command prompt should result in two successful console
logs.

Previously we introduced the phpmyadmin GUI tool which provides support for the database. Clearly
if we are using Node.js rather than PHP, it isn’t worth installing the LAMP stack in order to check the database
content. For these examples we shall continue accessing the database via code, however if a GUI visualization
is preferred, the MySQL Workbench comes as part of the MySQL installation, and after running the previous
code, you should see the calendar database schema appear in the workbench, as shown in Figure 14.1.

PERFORMAMCE
&) Dashboard
.;:;."" Performance Reports

.:!:-q“ Performance Schema Setup

SCHEMAS L
Q, |Filter objects
¥ [calendar

B9 Tables

B views

]

Stored Procedures
[ot .
o Functions

[= sakila
[3 5ys
[= world

Figure 14.1: The empty Calendar Database Schema shown in MySQL Workbench.

14.1.2 Creating a MySQL Table

Once the database has been created the next step is to add a table to it. Again, Node.js is used to
create a table. Note the difference in the createConnection() function, with the database being specified.

const mysgl = require('mysql');
const connection = mysql.createConnection({
host: "localhost",

user: "root",

password: "xxxxxxxx",

database: "calendar"

N;

The SQL statement for creating a table has been discussed previously, in this example a SQL query is
constructed and then called by the query() method.

196

connection.connect(function(err) {
if (err) throw err;
console.log("Connected!");
var sql = "CREATE TABLE appointments (id INT AUTO_INCREMENT PRIMARY KEY, title VARCHAR(255), details
VARCHAR(255), date DATE)";
connection.query(sql, function (err, result) {
if (err) throw err;
console.log("Table created");
1
1;

Running the file in the Node.js command prompt, should result in the successful console logs being
displayed. In this case, the table has 4 fields, beginning with an ID field which is automatically incremented.
The other fields are for storing the title, details and date of an appointment. Again, the MySQL Workbench can

be used to check the table is set up as planned.

calendar.appointments ¢

Info Columns Indexes Triggers Foreign keys Partitons Grants DDL

Column Type Default Value Mullable Character Set Collation
id int(11) NO
title varchar(255) YES utfamb4 utfamb4_0900_...
details varchar(255) YES utfamb4 utfamb4_0900_...
date date YES

Figure 14.2: The appointments Table Structure as seen in MySQL Workbench.

14.1.3 Inserting Data into MySQL

Having created the table, the next step is to insert some data.

connection.connect(function(err) {
if (err) throw err;
console.log("Connected!");
var sgl = "INSERT INTO appointments (title, details, date) VALUES ('Dentist’, 'Get Filling', '2018-07-19
03:00:00')";
connection.query(sql, function (err, result) {
if (err) throw err;
console.log("1 record inserted");
1
h;

Again, the SQL statement is prepared and then sent to the database via the query() method. Again the

Node.js console will output a success message and the MySQL Workbench can be used to reconfirm success.

197

calendar. appointments Search appointments ¢
G ¥ ¥ 8 [, & | Lmitto 1000rows ~ w2 A 1=

1 ® SELECT * FROM calendar.appointments;

£
Result Grid | HH 4% Fiter RDL‘ISII:I Edit: |1‘1| iy ok | Exportf/Import: {8 | Wrap Cell Content: TA&
id title details date
1 Dentist GetFiling 2018-07-19

Figure 14.3: Querying the appointments Table in MySQL Workbench.

14.1.4 Retrieving Data from MySQL

We can retrieve the data from the database using the standard SQL Select statement.

connection.connect(function(err) {
if (err) throw err;
connection.query("SELECT title, details, date FROM appointments", function (err, result, fields) {
if (err) throw err;
console.log(result);
1
1;

Running this code from the Node.js Command Prompt presents the current database contents.

illing",
3717:00:00.000Z }]

Notice the callback function for the query takes 3 parameters; err, result and fields. The err parameter
contains any errors in case that the query fails, and hence in the example the error is thrown to the console.
The result parameter is displayed above and in this example there is only one entry in the database to be
returned. The result object is an array where each row is stored in a different index, so the contents of the

array could be written to a webpage as follows, with the result displayed in Figure 14.4.

res.write(result[0].title + "
" + result[0].details + "
" + result[0].date);

C @ @ Iocalhost:3080

Dentist
Get Filling
Thu Jul 19 2018 00:00:00 GMT+0700 (SE Asia Standard Time)

Figure 14.4: Outputting the Results of a Query.

198

The third parameter, fields provides some information about each field that is returned, so for example
if that is logged for our example query, the fields data about the name field is as follows.

The query function can support any valid SQL statements, including Update, Delete, Drop Table, and
clauses such as Limit and Where, as well as handling table Joins. As an example, we can edit the SELECT
statement to include a where clause to select appointments from a particular date.

connection.query("SELECT * FROM appointments WHERE date='2018-07-19'"", function (err, result, fields) {
if (err) throw err;

console.log(result);

N

The threat of SQL injections has already been discussed, but it is a common problem to query a
database based on a user input. It is important to escape any user inputted values to prevent an SQL injection.
This can be done using the mysql escape method, as in the following example where the query is based on a

variable ‘date’.

connection.query("SELECT * FROM appointments WHERE date=" + mysql.escape(date), function (err, result,
fields) {
if (err) throw err;

console.log(result);

N

14.2 Node.js & MongoDB

Just as Node.js offers an alternative to PHP as a server side language, there are alternative databases
to MySQL, with MongoDB becoming the leading NoSQL database. Rather than using the traditional relational
data model, NoSQL databases offer more flexibility to how data is stored and retrieved, helping to assist with
the modern world challenges of ‘Big Data’. MongoDB therefore became one of the key elements in the MEAN
development stack, which consists of MongoDB, Express.js, Angular and Node.js. The MEAN stack is growing
in popularity for developing modern web apps and the other parts of the stack are discussed in following

chapters.

199

14.2.1 Connecting to MongoDB

There are several platforms setup to run a MongoDB database as a service in the cloud, via Amazon or
Google. Alternatively MongoDB can be downloaded from https://www.mongodb.com, with different versions

available for different platforms. Follow the installation instructions to setup MongoDB on your local machine
to experiment with the examples discussed here. MongoDB requires a directory to store its data in — in this
example, it was set to \data\db. To start MongoDB on a windows machine, the mongod.exe executable needs
to be run. The database can then be accessed through another command prompt by opening mongo.exe. As
well as installing MongoDB, the mondoDB module needs to be installed by Node.js so that we can access it via

Node.js scripts.

C:\nnr>npm install mongodb

Once set up, the following script will connect to the database.

var MongoClient = require('mongodb').MongoClient;
MongoClient.connect("mongodb://localhost:27017/myDB", function(err, db) {
if('err) {
console.log("Connection Successful");
}
1;

14.2.2 Creating a Collection in MongoDB

MongoDB stores its data in collections, which are similar to tables in traditional relational databases.
Each database can have several collections, and each collection contains data in documents, similar to records
in a relational database. Rather than needing create the structure of a table, data of a variety of types can
simply be added to a collection. The following example then creates a database called ‘calendar’, and then
creates a collection called ‘appointments’. If an error occurs a message will be posted in the Node console.

var MongoClient = require('mongodb').MongoClient;
MongoClient.connect("mongodb://localhost:27017/calendar", function(err, db) {

if (err) throw err;

const myDB = db.db('calendar');

myDB.createCollection(‘appointments’, {strict:true}, function(err, collection) {

if (err) throw err;

};

1;

The method called createCollection() is used here to create the collection, and in this case it takes 3
parameters, the first being the name of the new collection, the second {strict:true} will make sure the
collection doesn’t already exist and returns an error if it does. The final parameter is a call back, which is this
case is just set to display an error. Once the collection is created it can be connected to by a shorter

connection method call.

200

myDB.collection('appointments', {strict:true}, function(err, collection) { });

14.2.3 Inserting Data into MongoDB

Once the collection is created data can be stored in it, by using the insert method. Note that it isn’t
necessary to specify what type of data is being inserted, or setup the collection structure before inserting data.

This makes MongoDB particularly useful for managing unstructured and semi-structured data.

var MongoClient = require('mongodb').MongoClient;
MongoClient.connect("mongodb://localhost:27017/calendar", function(err, db) {
var myDB = db.db('calendar’);
var collection = myDB.collection('appointments');
var docl = { date: "2018-06-28", title: "Dentist", details: "Get Filling Done" };

collection.insert(doc1);

N

MongoDB Compass is a convenient way to manage the data in a MongoDB database, similar in some
ways to the phpmyadmin tool introduced previously. Compass offers a GUI that allows you to visualize and
explore the data, as well as inserting, deleting and updating records. For now, it is useful for checking that the
database and collection have been created correctly and the data has been inserted. Figure 14.5 shows a screen
shot of compass with the data correctly inserted - note that the document has been given a unique identifier
(5b50a81472139025b80c58f2 in this example).

calendar.appointments

Documents

INSERT DOCUMENT RYUISAEE—¥t-1) B TABLE

Figure 14.5: Inspecting the MongoDB Database using Compass |.

MongoDB inserts (and updates and removes) data in the database asynchronously, which means the
command is sent to the server and then forgotten, which means there is a possibility that the data doesn’t get
inserted for some reason. The insert() method can be enhanced by adding a callback function, and also adding
{w:1} to ensure an error is returned if the document fails to insert correctly. In this and subsequent examples
the requires to connect to the database are omitted.

201

var collection = myDB.collection('appointments');
var docl = { date: "2018-06-30", title: "Birthday" };
collection.insert(doc1, {w:1}, function(err, result) {
if(err) throw err;
else

console.log("Success!")

N;

Also notice that in this second example there is no ‘details’ field. MongDB also allows multiple
documents to be inserted in one statement by creating an array of documents.

var collection = myDB.collection('appointments');
var docs = [{ date: "2018-07-01", title: "Meeting", details: "In Room 412" },
{ date: "2018-07-02", title: "Follow Up", details: "In Room 412" }]
collection.insert(docs, {w:1}, function(err, result) {
if(err) throw err;
else

console.log("Success!")

N;

Again Compass can be used to inspect the inserted data.

appointments
_id Objectld date String title String details String

2018-06-28 Dentist Get Filling Done

Figure 14.6: Inspecting the MongoDB Database using Compass |I.

14.2.4 Retrieving Data from MongoDB

The simplest way to retrieve data from a MongoDB Database is using the find() method.

var collection = myDB.collection('appointments');
collection.find().toArray(function(err, items) {
console.log(items);

N

In this example the entire contents of the collection is returned and converted into an array, which
could then be processed perhaps to search for appointments from a particular day. Care should be taken
with this approach however as the memory requirements for handling large amounts of data may create
severe scalability concerns. Nonetheless the console can be used to inspect the contents of the database as
follows.

202

An alternative is to use the findOne() method where a query field can be specified and only one result

returned.

var collection = myDB.collection('appointments');
collection.findOne({date:'2018-06-28'}, function(err, item) {
console.log(item);

N;

In this case just a result matching the date is returned.

The preferred method of querying a MongoDB database is to stream results in and deal with them

individually, rather than selecting all the data in one go.

var collection = myDB.collection('appointments');
var stream = collection.find({date: /.*2018\-06.*/}).stream();
stream.on("data", function(item) {
console.log(item);
1;
stream.on("end", function() {

console.log("Done");

N

A stream is created to collect and process the results. In this case a regular expression is used to find
any results where the date contains 6/2018. When the stream returns data it is logged in the console, and
when it ends the console logs “Done”.

203

The query parameter specified in the find() method allow a subset of results to be returned, and

MongoDB supports several comparison operators as shown in Table 14.1.

Operator Description

Seq Matches values equal to specified value

Sgt Matches values greater than specified value

Sgte Matches values greater than or equal to specified value
Sin Matches any values in a specified array

St Matches values less than specified value

Slte Matches values less than or equal to specified value
Sne Matches values not equal to specified value

Snin Matches values not in a specified array

Table 14.1 MongoDB Query Comparison Operators
14.2.5 Deleting Data from MongoDB

Records can be removed from MongoDB using the remove() method.

var collection = myDB.collection('appointments');
collection.remove({date:'2018-06-28'}, {w:1}, function(err, result) {
if(err) throw err;
else

console.log("Success!")

N

Note that this example uses a callback to ensure that the data is removed. Also note that if no

parameters are given to the remove() method, all the documents in the collection will be removed.
14.2.6 Updating Data in MongoDB

Data can be updated in a MongoDB database using the update method(), as demonstrated in the

following trivial case.

var collection = myDB.collection(‘appointments');

collection.update({date:'2018-06-30'}, {Sset:{date:'2018-06-29'}}, {w:1}, function(err, result) {
if(err) throw err;

else

console.log("Success!")

N;

204

14.3 MysQl vs MongoDB

So far this chapter has illustrated how Node.js can be used alongside both a MySQL and a MongoDB
database, and while either would work as the database, there are clearly similarities and differences between
them (and other alternatives). Some obvious similarities are that both are inexpensive database solutions, and
both support basic CRUD operations (Create, Read, Update, Delete) on the data. There are also some clear
differences, in terms of both syntax and semantics. While MySQL deals with fields and tables, MongoDB deals
with documents and collections. Syntactical differences include the difference between “SELECT” and “find()”.
Regardless, both provide a valid database solution, so it is worth exploring the differences between them and

their relevant use cases.

Relational databases have been the stalwart of databases for many decades, with MySQL being an
established choice since 1995. Relational databases are carefully designed to structure and manage data in a
clear, organized way. Over recent years, data has changed in several ways. Firstly the concept of “Big Data” has
emerged, describing an environment where much more data is being produced concerning a wide variety of
topics. In today’s interconnected world, every interaction creates data of some kind, and there is a need for
managing and organizing such data to extract valuable information. Databases today are being expected to
deal with different kinds of data; unstructured and semi-structured. MySQL and other relational databases

have great strengths to offer, but NoSQL databases such as MongoDB offer alternative benefits.

One advantage MongoDB has over MySQL is the dynamic schema which affords flexibility in the way
the database is designed. The flexibility supports missing data and also faster agile development methods as
there is no need to design and define the database schema before development. Modern application
development is fast-paced with the need to deliver a product to market being a pressing issue, and MongoDB
supports agile development. The data in MongoDB is stored as BSON, a variation of JSON that supports all
JavaScript data types.

On the other hand, MySQL is a mature solution that is well tested, and built to be compatible with
many environments. MySQL follows the ACID model, which means consistency in the database is Atomic,
Consistent, Isolated and Durable, while MongoDB currently follows a BASE model, which means Basic
Availability, Soft-state and Eventual consistency. Because of this MySQL is more likely to yield accurate results,
while it is acceptable for some updates to not be immediate in MongoDB. However, MongoDB is scheduled to
follow the ACID model in 2018.

A key difference between the databases concerns scalability, which is particularly an issue in the
current world of “Big Data”. MySQL relies on “Vertical Scaling”, where the database is stored on a machine and
the performance of that machine is improved by increasing the RAM and processing capabilities of that
machine. “Horizontal Scaling”, which is better supported by MongoDB, involved dividing the data between
multiple machines where each machine handles their share of the workload, otherwise known as sharding.
MongoDB’s ability to break up a dataset and store it in multiple shards supports scalability.

Selecting the right database for a new project is an important decision, and both relational databases

like MySQL and NoSQL databases like MongoDB offer valid alternatives. Legacy projects with well-established

205

structure for their data will certainly prefer a relational data model, while many new projects dealing with
unstructured data, with an expectation to grow fast may choose a database such as MongoDB.

Key Points

e MySQL is a relational database where similar types of data is stored in tables that are then related to
each other.

MySQL Workbench can be used to view a MySQL database.

Standard MySQL queries can be executed by Node.js to create, insert and retrieve data from a MySQL
table.

e MongoDB offers a flexible data store where data is stored in collections, adapting to challenges of Big
Data.

The MongoDB Compass tool can be used to view a MongoDB database.
e MongoDB queries are similar to MySQL queries, allowing the same abilities to create, insert, retrieve

and delete data.

MySQL and MongoDB both have their uses in modern web development, understanding their

strengths is important when deciding which option to use.
Further Resources

1) W3Schools has an introduction to using Node.js with MySQL that can be found here:
https://www.w3schools.com/nodejs/nodejs_mysql.asp

2) MongoDB can be downloaded from here, along with further relevant resources:
https://www.mongodb.com/

3) Tutorialspoint offers a comprehensive introduction to MongoDB here:

https://www.tutorialspoint.com/mongodb/
Assignment

Previous chapters should mean you are already comfortable with MySQL as a database, so set up a
MongoDB collection of calendar appointments and adjust your existing code to populate your calendar with
appointments.

206

Chapter 15

Express.js

Objectives

Express.js is a lightweight framework for Node.js. A previous chapter introducing Node.js introduced
some of the available modules from the Node Package Manager and discussed some server tasks such as
handling URL requests. This chapter extends on that as using a framework makes tasks such as routing more
convenient. Express.js is part of the MEAN development stack, along with MongoDB, Node.js and Angular. This
chapter will discuss how Express.js works alongside both Node.js and MongoDB to handle server requests.
After reading it you should:-

e Be able to set up routes for handling different HTTP methods.

e Be able to build an APl to make database requests easier to manage by the client.

e Be able to add further modules to Express.js, such as body-parser, which can parse the contents of a
form to be inserting into a database.

e Beable to handle files uploaded to the server by the client.

Contents

15.1 Getting Started with Express.js
15.2 Routing with Express.js

15.3 Creating an API with Express.js
15.4 Uploading Files with Express.js

207

Express.js is described as a fast, unopinionated, minimalist web framework for Node.js. This
description may need some further explanation. Firstly, Express.js is billed as a framework, while jQuery is
billed as a library and Node.js is billed as a runtime environment. There is some debate over the use of these
different terms, most notably the difference between a library and a framework. The generally accepted
difference between a library and a framework goes along the lines of “don’t call us, we’ll call you”, in that a
library contains a collection of code that can be called by the developer, while a framework provides generic
functionality that can be built upon by the developer. Frameworks have some differences from libraries, in that
there is an inversion of control — while the developer calls the library, the framework ‘calls’ the developer’s
code. Frameworks are also intended to be extensible, but not modifiable, in other words, the developer can

add to the existing code, but not change the existing code.

Express.js is also fast, and minimalistic, and intentionally so. There are various further modules that
can be added to extend the core functionality, but Express.js is unopinionated, leaving it up to the developer
to choose which modules to use and how to implement them. Express.js therefore gains the benefit of
implementing good practice, and good software design patterns, while allowing the developer some flexibility.

This chapter will investigate how Express.js builds on Node.js.
15.1 Getting Started with Express.js

The first project as always is to display “Hello World”, this time using Express.js. First create a new
directory for your project, then open your Node.js console and navigate to the right directory. This time we will
use Node.js to create the package.json file, using the command “npm init”. The package.json file is particularly
useful when you want to publish a project, so you will be asked to give your package a name, version,
description, etc. For now it is ok to just use the default settings, although you should name you package
something other than express — perhaps expressdemo. The next step is to install express to your project.

C: i expressdemo>npm install ex

The next step is to create a server.js file in the root of your new directory, with the contents as follows.

const express = require('express');

app = express();

app.get('/', function(request,response){
response.send("Hello World!");

N

app.listen(3000, function(){console.log("Express server started")});

There is similarity between this example and the “Hello World” example in Node.js, in this case though

Express.js is used to send the response. Notice that the code does require the “http” module this time, this is

208

because Express.js already requires it. This code responds to a get request on port 3000. We can initialize it in
the Node.js terminal to get the console message declaring the server has started.

Opening localhost in a browser using port 3000 will then display “Hello World!”.

- localhost: 3000/ b4

- G @ localhost:3000 e P B =

Hello World!

Figure 15.1: Hello World using Express.js

15.2 Routing with Express.js

Routing is concerned with how the application endpoint handles requests from the client and the
server needs to be instructed how to deal with requests correctly. In the preceding example this was managed
by the get() method, which handles GET requests. Here when the root of the domain is called (localhost), a
callback function is specified to send “Hello World!” back as the response. The Express.js app object contains
methods for handling each of the HTTP methods, GET, POST, etc. and the basic syntax for each method is as

follows;
app.METHOD(‘path’, callback);

Multiple callbacks can be specified in sequence for each method and if so the next() function should
be called to move on to the next callback function. In the above example the callback function took the request
and response objects as parameters. The request object contains all the information about the request,
including any GET parameters sent, for example, the request object contains a params variable that is

demonstrated in the next example.

const express = require('express');

app = express();

app.get('/:month/:year’, function(request, response){
response.send(request.params);

N;

app.listen(3000,function(){console.log('Express server started')});

Once again initialize this new version of server.js in the Node.js console and then opening up a new
browser will display the request parameters. This time the url isn’t the root url, instead it contains a path

specifying the month and year such as:- http://localhost:3000/12/2018. These parameters are then sent back

209

in the response and displayed as JSON in the browser window as in Figure 15.2. The next step will be to use
the contents of the request object to specify different routes.

localhost: 30001272018

<« Cc @ @ localhost:3000/12/2018 TURR « I T —
J150M Raw Data Headers

Save Copy Filter JSOM

year: "2a18"

Figure 15.2: Returning Parameters as JSON

Once again, editing the server.js file we could specify different routes for different URLs to take. In this

case the route resolves with a simple output, but depending on the url, different outputs will be displayed.

const express = require('express');

app = express();

app.get('/login', function(request, response){
response.send("Login Page");

1;

app.get('/users/ken’', function(request, response){
response.send("Ken's Home Page");

1;

app.get('/users/matty', function(request, response){
response.send("Matty's Home Page");

1;

app.get('/users/danny', function(request, response){
response.send("Danny's Home Page");

};

app.listen(3000,function(){console.log('Express server started')});

After initializing this with Node.js, opening the browser with different urls will display differently; i.e.
opening http://localhost:3000/users/ken will display “Ken’s Home Page”, while opening

http://localhost:3000/users/matty will display “Matty’s Home Page”. This would work to correctly route any

page request, but clearly it isn’t a scalable solution as the server.js file will grow to handle every new page that
is created. Instead, we could divide the routing operations, beginning by writing the .js file to handle urls that
begin with /users/. In the following demonstration a directory called ‘router’ is created in the root of the
project, and then within that directory a file called ‘user_router.js’ created which contains the following code.

It has essentially taken the sub-routes from the users part of the previous code. This time an express Router is

210

created and used to direct the different routes. The final line ‘module.exports = router’ will allow this router to
be used in our next file.

const express = require(‘express');

router = express.Router();

router.get('/ken’, function(request,response){
response.send("Ken's Home Page");

1;

router.get('/matty’, function(request,response){
response.send("Matty's Home Page");

1;

router.get('/danny’', function(request,response){
response.send("Danny's Home Page");

N

module.exports = router;

Next we can edit the server.js file to make use of our new router.

const express = require(‘express');

app = express();

app.use('/users',require('./router/user_router'));

app.get('/login', function(request, response){
response.send("Login Page");

N

app.listen(3000,function(){console.log('Express server started.')});

Now if the path begins with ‘/users’ the new router will handle it. Clearly the same principle could be

applied to set up other paths.
15.3 Creating an API with Express.js

An API is an Application Programming Interface and this section investigates how the routing in
Express.js can be used to create an APl to make interacting with a MongoDB more convenient. The previous
chapter created a MongoDB database to store a collection of data about calendar appointments. Now we will
create a router to deal with different database requests, such as requesting all appointments, requesting
appointments from a particular month, and inserting new data into the database. We begin by setting up a
server.js file using express. Whenever a request comes in for localhost:3000/appointments/ they will be
directed to the appointments_router.

const express = require('express');

app = express();
app.use('/appointments',require('./router/appointments_router'));
app.listen(3000,function(){console.log('Express server started.')});

The appointments router can be initially set up as follows.

211

const express = require(‘express');

api = express.Router();

api.get('/', function(request, response){
response.send("All");

1;

api.get('/:month/:year', function(request, response){
response.send(request.params);

1;

api.post('/', function(request, response){
response.send("Create");

N

module.exports=api;

This example has set up 3 routes. The first is for returning all the appointments in the database,
although currently it just returns “All”. The second is to return appointments for a particular month according
to the URL, where the request for localhost:3000/appointments/7/2018 would return all appointments in July
2018. Currently this just returns the request parameters and would output as in figure 15.3. The third route is
for creating a new appointment, but currently just responds with “Create”. Note that while the first two routes
respond to GET requests, the third route responds to a POST request.

e =] X
[Y localhost:3000/appointm X

<« C' | @ localhost:3000/appointments/7/2018 Wi

{"month":"7", "year": "2018"}

Figure 15.3: Returning Request Parameters

The next step is to replace each of these routes, beginning with the request to return all appointments.

api.get('/', function(request, response){
var MongoClient = require('mongodb').MongoClient;
MongoClient.connect("mongodb://localhost:27017/calendar", function(err, db) {
var myDB = db.db('calendar’);
var collection = myDB.collection(‘'appointments');
collection.find().toArray(function(err, items) {
response.json(items);
};
1
1;

212

Assuming the MongoDB database is running and set up as at the end of the previous chapter, this will
connect to the database and find all elements in the ‘appointments’ collection and return them in JSON format,

as can be seen in Figure 15.4.

[4 localhost:3000/appointm X
<« C' | ® localhost:3000/appointments/ Y|

[{" id":"5b50a81472139025b30c58F2", "date":"28/6/2018", "title": "Dentist™, "details":"Get Filling Done"},
{"_id":"5b50a881b8e643198c2e7ec8”, "date”: "30,/6/2018", "title": "Birthday"},
{"_id":"5b50aBaeebf1592c247d700a"," "date":"1/7/2018","title" :"Meeting", "details":"In Room 412"},

{" _id":"5b50aBaeebf1592c247d700b" ,"date":"2/7/2018","title" :"Follow Up","details":"In Room 412"}]

Figure 15.4: APl Returning All Appointments

The second route is for dealing with requests for appointments from a specified month and year. It is
similar to the previous route, however it requires a regular expression in the query to specify the month and

year.

api.get('/:month/:year', function(request, response){
var MongoClient = require('mongodb').MongoClient;
MongoClient.connect("mongodb://localhost:27017/calendar", function(err, db) {
var myDB = db.db('calendar’);
var collection = myDB.collection('appointments');
var re = new RegExp('.*' + request.params.year + '-' + request.params.month + ".*");
collection.find({date: re}).toArray(function(err, items) {
response.json(items);
1
};
1;

Once again the results are returned in JSON format, so JavaScript in the browser could be used to

display these appointments as required.

[localhost:3000/appointm X
&« C' | ® localhost:3000/appointments/7/2018 wl| i

[{"_id":"5b50a8aeebf1592c247d700a","date":"1/7/2018","title": "Meeting"”,"details":"In Room 412"},
{"_id":"5b50a8aeebf1592c247d700b", "date":"2/7/2618","title" :"Follow Up","details":"In Room 412"}]

Figure 15.5: API Returning Appointments for Specified Month

The third route is used for creating new appointments and handles POST requests. In order to demo

it, we first create a simple form.

213

<form action="http://localhost:3000/appointments/" method="post">
Date: <input type="date" name="date">

Title: <input type="text" name="title">

Details: <input type="text" name="details">

<input type="submit" value="Submit">

</form>

When the form is submitted it sends a post request to the localhost server, including whatever has
been filled in. To access the data that has been filled in, another Node.JS module can be used called “body-
parser”. First it needs to be installed.

Once the body-parser module is installed, you can require it near the top of the appointments router.

var bodyParser = require('body-parser');
app.use(bodyParser.json());

app.use(bodyParser.urlencoded({ extended: true }));

Now the body of the request will be parsed, and the contents stored in the request.body object. After
submitting the form the request.body object could be examined in the console to see that it is JSON containing

the data submitted on the form.

Because the fields on the form map neatly onto the fields in the collection, the request.body can
simply be inserted into the MongoDB collection. So, a new route can be completed as follows.

api.post('/', function(request, response){
var MongoClient = require('mongodb').MongoClient;
MongoClient.connect("mongodb://localhost:27017/calendar", function(err, db) {
var myDB = db.db('calendar’);
var collection = myDB.collection(‘'appointments');
collection.insert(request.body);
response.send("Successfully Created");
};
1;

Double check the database using compass and you’ll see a new document added to the collection as
shown in Figure 15.6. Further routes can also be created and added to the API for other tasks, such as deleting

or updating an appointment.

214

appointments
_id Objectld date String title String details String

5b30281472139025680c5812 2018-06-2

Get Filling Done

2 No field
Sb50alaeebf1592c247d700a 2018-07-01 Room 412
5b50a8aeebf1592c247d700b 2018-07-02 Follow Up In Room 412
511c3a269e0b3ad042000c 2018-07-04 Project Deadline Deadline Day

Figure 15.6: Result of API to Insert Appointment

15.4 Uploading Files with Express.js

A common task in web development is to upload files to the server, such as allowing a user to upload
an avatar, or a gallery of images. In Express.js this can be achieved with the use of middleware. Whilst Express.js
is a minimalist framework, it is easily extended by using middleware, as we have already seen with the body-
parser module. Middlewares are essentially functions which have access to the request and response objects
and are executed ‘in the middle’, after the incoming request. The ‘body-parser’ middleware clearly parses the
body of an incoming request and creates a new object (req.body) populated with the contents of the body. In
this section will look at another middleware called ‘multer’ which handles multipart/form-data, which can be

used for uploading files. The first step, as previously, is to install multer.

Next we can create a simple html file that contains a form. Notice that the form has an enctype
property set to “multipart/form-data” as multer won’t handle forms that aren’t multipart. There is one input
field, of type file, with the name avatar.

<form action="http://localhost:3000/" method="post" enctype="multipart/form-data">
File: <input type="file" name="avatar">

<input type="submit" value="Submit">

</form>

This form is set up to upload a single file, although a similar principle can be applied to upload multiple
files. The next step is to create a route to handle the file upload, in this case, to keep the example simple, there
is just one route for the post method. Before the post method is called, multer needs to set up the destination
directory for the file, in this example the destination (or dest) is set to the uploads directory. Details about the
uploaded file are logged on the console in the callback function.

var express = require('express');

var app = express();

var multer = require('multer');

var upload = multer({ dest: 'uploads/' });

app.post('/', upload.single('avatar'), function (req, res, next) {
console.log(req.file);

)

215

app.listen(3000, () => {
console.log("Server is listening on port 3000");

N;

The logged data includes some information about the uploaded file. Note that the original filename

has been replaced by a random string.

The file will appear in the specified directory, and the information contained in the JSON object can
then be stored in a database perhaps with the new filename associated with user’s account so the correct

avatar could be displayed.

> ThisPC > Local Disk (C:) > www > uploads v Q) | Search uploads
Name Type Size
| 3459147af8d62e7ceca948af528974b8 File 11 KB

Figure 15.7: Uploading Files with multer.

Key Points

e Express.js is a minimalist framework for Node.js, which means it makes certain tasks such as routing
URLs more straghtforward.

e Express.js is unopinionated, allowing the developer choice in how to add modules to extend its
functionality such as with body-parser and multer.

e Express.js can be used to create a router to handle different Http methods and requests.

e An API can be created to better handle access to data resources, such as in a MongoDB database, a
full APl will make it possible to retrieve, insert, update and delete database entries.

e Express.js can also be used to handle server tasks such as uploading files.
Further Resources

1) The main Express.js website can be found at the following link, complete with a Guide and API
reference:

https://expressjs.com/

216

2) Tutorialspoint has an introductory guide to Express.js as part of its Node.js tutorial, which can be
found here:
https://www.tutorialspoint.com/nodejs/nodejs_express_framework.htm
3) A further tutorial can be found at Tutorialsteacher, here:

http://www.tutorialsteacher.com/nodejs/expressjs
Assignment

Extend your MongoDB database for calendar appointments by building an APl to make it easy to
create, retrieve, update and delete appointments. Add to your create form a field to allow the user to add a
file to the appointment which can then be uploaded and a reference to its location be stored in the database.

217

Chapter 16

Angular

Objectives

Angular is the final part of the MEAN stack, a front-end framework developed by google and written

in TypeScript, a superset of JavaScript. The framework is growing in popularity, representing a very different

approach to web development than discussed previously, based on a components/services architecture.

Angular is particularly popular for single page apps. This chapter introduces the key aspects of Angular and

demonstrates a small app. After reading it you should:-

Be able to set up an Angular app using the Command Line Interface (CLI).

Understand what components are and how to create and style different components.

Understand directives such as *ngFor and *ngilf.

Understand how data binding works in Angular.

Be able to use pipes to format output.

Be able to bind actions to events when the user interacts with the user interface.

Understand what services are for, particularly how a service can be used to inject data into an app.

Be able to create a router for use within the browser.

Contents

16.1 Getting Started with Angular

16.2 Components in Angular

16.3 Adding a TypeScript Class

16.4 Pipes and Two-Way Data Binding in Angular

16.5 Event Binding in Angular

16.6 Services in Angular

16.7 Routing in Angular

218

The previous chapter introduced Express.js a web framework that runs on the server, in this chapter
we introduce Angular, a web framework that runs in the client. As web development has matured, more good
practices have been developed and adopted, including incorporating ideas from standard software
development, such as reusable code, object orientation and the use of design patterns such as the observer
pattern. We previously introduced Express.js as a server-side framework that works well with Node.js.
Express.js is not the only choice though with several others written in alternative languages such as Laravel for
PHP, Ruby on Rails for Ruby, Catalyst for Perl and Django for Python. Different developers have different
preferences for each, but Express.js is chosen here as part of the MEAN stack, with Angular being the final part.

Angular is an open-source, front-end framework based on TypeScript, a superset of JavaScript.

Angular is an open-source, front-end framework

based on TypeScript, a superset of JavaScript.

Angular began as AngularlS, developed and maintained by Google, and first released in 2010, however
Angular (now) refers to Angular Version 2 (and up). Angular 2.0 was a complete rewrite of the initial Angularls,
first released in September 2016. There remains some confusion between the two and care should be taken
when finding supplementary material online to make sure it is referring to the correct version. Before diving
into Angular, first we’ll briefly explore Angular)S. Written in JavaScript, by Google and a community, with the
intention of dealing with some single page applications. There were several frameworks built at this time based
on the principles of Model View Controller (or MVC). MVC is an architectural pattern mainly for user interfaces,
which focuses on separating the data from the way it is presented to the user, again following a “separation of

concerns” principle.

Controller

JavaScript

Users Services

Figure 16.1: Basic View of AngularJS MVC Architecture

The Model refers to the data model, managed separately from the user interface and the way the data
is displayed. The View refers to the output representation of the data, and there may be several different views
of the same data, for example a table of data could be viewed in spreadsheet form, or as a graph or diagram.
The Controller deals with inputs, often validating it, and then passing it on to the model to then update a view.
For a blog, each post contains some data, but there could be multiple views of that data — Create, Edit, View,

219

Preview, etc. Angular)S incorporates MVC into its architecture so the developer can simply follow the good
practice, as do many other Front-End MVC Frameworks, such as Kendo, Ember or Meteor. Each framework
has its good points and bad points, and each has a community supporting and promoting its development, with
differing opinions on which is best. However, AngularlS, developed by Google, and React, developed by
Facebook, appear to be the most popular. React describes itself as a JavaScript library for building user
interfaces but takes a component-based approach to building a page out of different components. When
Angular was rewritten the structure was also based on a components/services architecture, while still taking

advantage of the separation of concerns approach from MVC.
16.1 Getting Started with Angular

Getting started with Angular is different from the other languages discussed in this book as first the
framework needs to be set up. Angular has a Command Line Interface (CLI) which can be used to create the
background files that are needed to get a project up and started. Assuming Node.js is already running, open
the console and use the following command to install the Angular CLI globally.

C:\>npm install —g @angular/cli

Once the CLI is installed, the next step is to create a new project. This can be done again in the
command line using “ng new my-app” where my-app is the name of your new project. This may take some

time as it creates all the necessary files and directory structure.

Once the project is set up, it is time to serve it, or launch the server so it can be viewed in a browser.
This is done by navigating to the project folder in the command line and using the ng serve command, adding

--open to open a browser to localhost.

Opening a browser with localhost to port 4200 will show the default Angular app as shown in Figure
16.2. Meanwhile many files have been created for the project already as can be seen by navigating the my-app
directory. Here you will find several files and directories. Firstly a directory called ‘e2e’, which is used for end-
to-end tests, and kept separate from the main app as used for testing the complete app. Secondly a folder
called ‘node_modules’, where all the third party Node.js modules are stored. The third directory is the ‘src’

directory where your project lives. The rest of the files are configuration files.

Inside the ‘src’ folder a further structure has been created. We shall look into the ‘app’ folder shortly.
The ‘assets’ folder is for storing images and other similar assets. The ‘environments’ folder stores files related

to different deployment environments as there may be differences between a development or production

220

environment. The favicon.ico file can be edited to make your site stand out in a bookmark bar. The index.html
file is the main project file, written with standard html. Within the <body> tags is an <app-root> tag which calls
the rest of the Angular app that we shall write, meaning in reality the main file won’t need to be edited. There

is also a ‘styles.css’ file where global stylesheet files can be stored.

(2] = m| X
Y Myrpp x

< C' | ® localhost:4200 b xd

Welcome to app!

Here are some links to help you start:
- Tour of Heroes

« CLI Documentation

- Angular blog

Figure 16.2: The default Angular App

Inside the ‘app’ directory there are five files already created. We can edit some of these files, beginning
with the ‘app.component.html’ file. This is standard HTML so it should be straight forward to see how this maps
onto the default Angular app shown in Figure 16.2. We can edit this file to remove the image and links as
follows. Notice that when you save this file, the page is automatically refreshed to display only the title. Also
notice {{ title }}, this is the syntax for Angular’s interpolation binding system, which binds the component’s title

value to the property displayed in the header tags.

<I--The content below is only a placeholder and can be replaced.-->
<div style="text-align:center">
<h1> {{ title }} </h1>

</div>

We can change the title element by editing the component class file — ‘app.component.ts’. This file
contains the code for the main app class, written in TypeScript. While you might not recognize all the code, you
should see the similarity with JavaScript. It begins by importing the Component class from the Angular core

library, and then decorates it. @Component is a decorator function which adds metadata to the component,

221

in this case the selector where it should be displayed, the template URL specifying the html file already edited,
and the CSS file for its styling.

import { Component } from '@angular/core’;

@Component({
selector: 'app-root’,
templateUrl: './app.component.html’,
styleUrls: ['./app.component.css']
1
export class AppComponent {
title = 'Hello World';

}

Once again, saving the changed title will automatically change the page displayed in the browser
window. The third file to edit is the css file ‘app.component.css’. Currently this is empty, but here we can specify

any styles for the component. Keeping it simple, we could change the color of the text in the <h1> tags.

h1{ color: blue; }

The result is the creation of a simple “Hello World” in Angular as seen in Figure 16.3.

a = O Pt
Y Myapp X

< C | @ localhost:4200 &

Hello World

Figure 16.3: Hello World in Angular

16.2 Components in Angular

Components are a vital building blocks for Angular, used for displaying things on the screen, as seen
in the hello world example, but also for listening for user inputs and responding to it. Angular is based on a
components/services architecture, so it is important to understand how components work in Angular. So far,
the AppComponent has created a class for the main app and we have seen how the component separates the
template (html), the style (css) and object code (ts). This is the parent component, but further child
components can be created to manage different parts of the page. The Angular CLI provides an convenient way

to generate a new component as follows.

222

Running the generate component command creates a new directory within the app, and creates 4 files
within that directory as well as adding the new component to the main app. Three important files for the
component are the class (ts), the template (html) and the style (css). In this example we have created a “team”
component and looking in the TypeScript file you will see a similar structure to the AppComponent, i.e. a
decorator linking a selector, the template and the style, and an export class. Here the class contains a
constructor and ngOnlnit(), a lifecycle hook called shortly after the component is created generally used to
initialize an object. Within this class we can create a new property, for this example a player with the value
“Harry Kane”.

import { Component, Onlnit } from '@angular/core’;
@Component({
selector: 'app-team’,
templateUrl: './team.component.html’,
styleUrls: ['./team.component.css']
1
export class TeamComponent implements Onlnit {
player = "Harry Kane";
constructor() { }
ngOnlinit() { }
}

The team.component.html file begins with some brief HTML to indicate that it works, but can be

replaced to bind it with our new data as follows;

{{player}}

Finally, the new component needs to be added to the AppComponent view in ‘app.component.html’,
by adding the selector <app-team>.

<l--The content below is only a placeholder and can be replaced.-->
<div style="text-align:center">

<h1> {{ title }} </h1>

<app-team></app-team>

</div>

For this example, the title of the app has been changed, but as you save your file, the browser
automatically updates as in Figure 16.4.

223

ﬂ MyApp X

& C | @ localhost:4200 % SUE

England Team

Harry Kane

Figure 16.4: Simple Child Component in Angular

So far this has demonstrated a very trivial child component in Angular. This is intentionally so, to keep
the code simple, however with the HTML and CSS skills already picked up, it wouldn’t be difficult to create
components with more interesting templates and styles for different parts of a webpage, such as a header,
footer, sidebar, content etc. Rather than making an app look good with HTML & CSS, we shall focus on

introducing some more Angular features in the coming sections.
16.3 Adding a TypeScript Class

Currently the player property is just a simple string data type, while in reality this could be a more
complex data type including their shirt number, their age, records, image etc. We can create a class for a player
in a separate ts file. Within the app directory create a player.ts file and add the following contents.

export class Player {
shirt: number;
name: string;

}

Clearly our Player class is still trivial, but it could easily be extended. Having created a Player class, it
needs to be imported into the team component by adding the following.

import { Player } from '../player';

A Player object can then be created within the TeamComponent class. This is only a temporary

measure for demonstration purposes as really the data shouldn’t be stored here.

player: Player = {
shirt:9,
name:"Harry Kane",

b

The template is currently displaying a string, so needs to be updated to display the relevant parts of
the TypeScript object as follows.

224

{{player.shirt}} : {{player.name}}

With minimal styling applied, the result is shown in Figure 16.5.

(s] = O pd
Y MyaApp X

& C' | @ localhost:4200 w o

England Team

9 : Harry Kane

Figure 16.5: Simple Child Component displaying a TypeScript Object

The England team isn’t just one man, so the next step is to display all the players, which means invoking
multiple player objects and displaying them in the team component. The players can be added to the app in
many ways, preferably by accessing a database, but to keep things simple, we can create a TypeScript file to
create and store the data in an array within the app directory. In this case we create a file called ‘team.ts’ with
the following sample contents. Note that the file imports the Player class.

import { Player } from './player’;

export const PLAYERS: Player[] = [{shirt: 1, name: "Jordan Pickford" }, {shirt: 2, name: "Kyle Walker" }, {shirt:
3, name: "Danny Rose" }, {shirt: 4, name: "Eric Dier" }, {shirt: 5, name: "John Stone" }, {shirt: 6, name: "Harry
Maguire" }, {shirt: 7, name: "Jesse Lingard" }, {shirt: 8, name: "Jordan Henderson" }, {shirt: 9, name: "Harry
Kane" }, {shirt: 10, name: "Raheem Sterling" }, {shirt: 11, name: "Jamie Vardy" }, {shirt: 12, name: "Kieran
Trippier" }, {shirt: 13, name: "Jack Butland" }, {shirt: 14, name: "Danny Welbeck" }, {shirt: 15, name: "Gary
Cahill" }, {shirt: 16, name: "Phil Jones" }, {shirt: 17, name: "Fabian Delph" }, {shirt: 18, name: "Ashley Young"
}, {shirt: 19, name: "Marcus Rashford" }, {shirt: 20, name: "Dele Alli" }, {shirt: 21, name: "Ruben Loftus-
Cheek" }, {shirt: 22, name: "Trent Alexander-Arnold" }, {shirt: 23, name: "Nick Pope" }];

A few more edits are required, firstly to use these players into the Team Component file we need to
import the new team.ts file by adding the following line.

import { PLAYERS } from '../team’;

Next, we need to replace the player property with our imported team. Here we create a new property

called players, removing the data about Harry Kane.

players = PLAYERS;

Now our team component imports an array of objects of player type. Again, this class could be

extended to store more data about each player, such as the URL of their picture or their match rating.

225

16.3.1 Using the *ngFor Directive

The next step is to update the team component template so that rather than just displaying one player
it will loop through our array of players and display each player. As we will display a list of items in a template,
it is appropriate to use HTML’s and tags. To loop through the array of players we can use Angular’s
repeater directive “*ngFor”, which works much like a for loop and is demonstrated below.

<ul class="team">
<li *ngFor="let player of players">
{{player.shirt}} : {{player.name | uppercase}}

® _ o x
ﬂMyApp x

&« C' | @ localhost:4200 Yl

England Team

: JORDAN PICKFORD
:KYLE WALKER

: DANNY ROSE

: ERIC DIER

: JOHN STONE

: HARRY MAGUIRE

: JESSE LINGARD

: JORDAN HENDEERSON
HARRY KANE

: RAHEEM STERLING
: JAMIE VARDY

: KIERAN TRIPPIER

: JACK BUTLAND

: DANNY WELBECK

15 : GARY CAHILL

16 : PHIL JONES

17 : FABIAN DELFH

18 : ASHLEY YOUNG

19 : MARCUS RASHFORD
20 : DELE ATLI

21 : RUBEN LOFTUS-CHEEK
22 : TRENT ALEXANDER-ARNOLD
23 : NICK POPE

N T e B B o N o S R T

— e e e
e W b — D,

Figure 16.6: Displaying a List Using *ngFor

226

16.4 Pipes and Two-Way Data Binding in Angular

The previous example also added a Pipe to make the names uppercase. There are several pipes
available in Angular, and they are useful for formatting output. Here the uppercase pipe has been applied, but
there are others for formatting dates, currencies and so on. It is also possible to create your own pipes. Figure

16.6 shows the results with minimal additional CSS styling.

The next step is to allow the user to edit the team members, and perhaps replace players. For this we
can add an input box for each player and use Angular’s two-way binding to bind the input box to the objects
property. [(ngModel)] is the syntax for the two-way binding and the following can be added to the loop to add
an input box after each player’s name.

{{player.shirt}} : {{player.name | uppercase}} <input class="input" [(ngModel)]="player.name">

The ngModel is an Angular directive and is part of the Forms Module that assists with handling forms
and features such as input boxes, but it isn’t available by default and needs to be added into the project. There
are 2 further steps needed to make it work. First, the FormsModule needs to be imported and added to the

app.module.ts using the following line of code.

import { FormsModule } from '@angular/forms';

This may be your first time editing the app.module.ts, so notice how the TeamComponent was already
added automatically for you. Secondly, the @NgModule imports array needs to add the FormsModule,
essentially adding any external modules the app needs.

imports: [
BrowserModule,
FormsModule

]

With some basic CSS styling added, the result is as in Figure 16.7. Note that as any textbox is edited,

the associated property is also edited.

e — Il X
ﬂ MyApp X

< C' | ® localhost:4200 w o

England Team

1 : JORDAN PICKFORD Jordan Pickford
2 : KYLE WALKER Kyle Walker
3:DANNY ROSE Danny Rose

4 : ERIC DIER Eric Dier

Figure 16.7: Two Way Binding in Angular

227

16.5 Event Binding in Angular

This section will demonstrate how to bind actions to events, i.e. when the user interacts with the
interface. As seen previously in JavaScript there are a variety of ways in which a user can interact with the
webpage, so again to keep it simple this example will allow the user to select their captain by using the click
event on a player’s name. The first thing to do here is to attach a function to handle the click event for any of
the players appearing in the list of players.

<li *ngFor="Ilet player of players" (click)="onSelect(player)">

Here when a list item is clicked upon the ‘onSelect()’ function will be called, with the selected player
sent as a parameter. The function has yet to be written, but should be added to the TeamComponent class.
Here we make a couple of changes, firstly adding a ‘captain’ parameter, and secondly implementing the

‘onSelect()’ function to assign the captain to whichever player has been selected.

captain: Player;
onSelect(player: Player): void {
this.captain = player;

}

Now that the captain has been selected, we should display it on the screen. Of course a new

component could be created to display the captain, but we will add it to the existing team component.

16.5.1 Using the *nglf Directive

Note that when the application is started, there is no captain selected, so we need to add a directive
to only display the captain after it has been selected. For this we can use the *nglf directive as follows.

<div *nglf="captain">Captain: {{captain.name | uppercase}}</div>

(2] = | X
[MyApp x

& C' | @ localhost:4200 o

England Team

Captain: HARRY KANE

| : JORDAN PICKFORD Jordan Pickford

2 : KYLE WALKER Kyle Walker

3 : DANNY ROSE Danny Rose

1. ERIC MIER Crin Mine h

Figure 16.8: Event Binding in Angular

Now when a player is clicked upon they are selected as the captain, and the team sheet is updated to

display the captain, again using the uppercase pipe. If no captain is selected then the div doesn’t appear.

228

16.6 Services in Angular

Currently the data for the app is being stored in a file (team.ts), which is then imported into the team
component. This isn’t ideal for many reasons, not least the challenge of updating data stored in a file format
when compared to a database. Also, the component should concentrate on presenting the data and delegate
the accessing part of the job to a service. A service can be used when code might be needed in many places,
such as when multiple components need to access the same data. In this section we will build a service that
uses HTTP to access the team data from a MongoDB collection. Before creating the service, the first step is to

set up a MongoDB collection, and create an API to access it, in a similar way to in section 15.3.

england.players

Documents

INSERT DOCUMENT RYUISUARE—gTi-1) &8 TAELE

players
_id Objectld number String name String
5b508f47d5e7Tb31087dd60b 1 Jordan Pickford
5b50008b559e592348f1b7a5 2 Kyle Walker"
5b30908b559e502348f1b7a6 Danny Rose
5b30908b559e592348f1b7a 4 Eric Dier
5b50008b559e592348f10b7a8 John Stone”

ANDLZTNAZAYD A0 BT alh

Figure 16.9: England Players in MongoDB

L R N e

After creating the collection, a server can be created node called ‘server.js’.

const express = require('express');

app = express();

app.use('/',require('./router/team_router'));
app.listen(3000,function(){console.log('Express server started.')});

This server directs incoming requests to the team_router, which just deals with two routes. The first
route returns the whole collection, while the second route returns a single item based on a specified id. It can
be tested by opening the Node.js server, and directing a browser to localhost:3000/ to see the whole collection.
Note that this line has been added ‘response.header("Access-Control-Allow-Origin", "*");" to allow other

connections from localhost.

229

const express = require(‘express');
api = express.Router();
api.get('/', function(request, response){
response.header("Access-Control-Allow-Origin", "*");
var MongoClient = require('mongodb').MongoClient;
MongoClient.connect("mongodb://localhost:27017/england", function(err, db) {
var myDB = db.db('england’);
var collection = myDB.collection('players');
collection.find().toArray(function(err, items) {
response.json(items);
};
1
1
api.get('/:id", function(request, response){
response.header("Access-Control-Allow-Origin", "*");
var MongoClient = require('mongodb').MongoClient;
MongoClient.connect("mongodb://localhost:27017/england", function(err, db) {
var myDB = db.db('england');
var collection = myDB.collection('players');
collection.findOne({number: request.params.id}, function(err, items) {
response.json(items);
N;
1
1;

module.exports=api;

Services are a key part of Angular, kept separate from Angular components. Services can perform a
variety of tasks, such as logging errors to the console, validating user inputs, or as in this case fetching data
from the server. In this case we will use an HttpClient service to create an instance of a service and inject it
into a dependent component. Before we create this service, the HttpClientModule needs to be imported into
the app within app.module.ts. Previously we added the FormsModule from ‘@angular/forms’, the
HttpClientModule can be found in ‘@angular/common/http’.

import { FormsModule } from '@angular/forms';

import { HttpClientModule } from '@angular/common/http';

Also add the HttpClientModule to the imports array in the same file.

230

imports: [
BrowserModule,
FormsModule,
HttpClientModule
1

Previously, we used the Angular CLI to generate a component, and it can now also be used to generate

a service.

This creates two files, where team.service.ts contains the TeamService class. Angular automatically

creates a skeleton file that we can edit.

import { Injectable } from '@angular/core’;
@Injectable({ providedin: 'root' })
export class TeamService {

constructor() { }

}

This imports and sets up the @Injectable decorator, which is responsible for creating instances of the
service and injecting it where it is needed. An injector needs a provider to manage how it is injected, in this
case it is provided in root, making it available throughout the application. The role of this service is to construct
instances of the TeamService class (using its constructor). In this example the objective is to make available to

any subscribers a getTeam() function, which queries the mongoDB collection.

import { Injectable } from '@angular/core’;
import { HttpClient } from '@angular/common/http’;
import { Observable } from 'rxjs';
import { Player } from './player’;
@Injectable({ providedIn: 'root' })
export class TeamService {
constructor(
private http: HttpClient,
){}
getTeam (): Observable<Player[]> {
return this.http.get<Player[]>('http://localhost:3000/');
}
getPlayer(id: number): Observable<Player> {
return this.http.get<Player>('http://localhost:3000/'+id);
}
}

231

We need to extend this service in several ways — firstly by importing HttpClient so we can make Http
requests. The constructor for the service is then used to create an http object which is in turn used in the
getTeam() method. The new getTeam() method is used to make the default query via express to return an

array of Observable Players. The getPlayer() method will be used later to return a single player.

Now that the service is set up, the next step is to edit the team component to make use of
TeamService. This requires a few edits to the TeamComponent, beginning by importing the new TeamService.
An instance of the TeamService is declared in the constructor, and then a getTeam() method implemented to
subscribe to the TeamService injector. The method is then called in ngOnlnit(), shortly after the component is

constructed.

import { Component, Onlnit } from '@angular/core’;
import { Player } from '../player’;
import { TeamService } from '../team.service';
@Component({
selector: 'app-team’,
templateUrl: './team.component.html’,
styleUrls: ['./team.component.css']
b
export class TeamComponent implements Onlnit {
constructor(private teamService: TeamService) { }
ngOnlnit() {
this.getTeam();
}
players: Player[];
captain: Player;
onSelect(player: Player): void {
this.captain = player;
}
getTeam(): void {
this.teamService.getTeam()

.subscribe(players => this.players = players);

A minor edit is needed to the template file and now the result is much the same as after the previous
section, with the key difference that now the data is loaded from the database. Using a similar approach further

routes can be created to create, update or delete records from the mongoDB.

232

<div *nglf="captain">Captain: {{captain.name | uppercase}}</div>
<ul class="team">
<li *ngFor="let player of players" (click)="onSelect(player)">
<div class="row">
<div class="col">{{player.number}} : {{player.name | uppercase}}</div> <div class="col"><input
class="input" [(ngModel)]="player.name"></div>
</div>

16.7 Routing in Angular

The previous chapter dealt with how Express is used to handle routing on the server, in a similar way
Angular can be used to handle routing on the client. To demonstrate this, we will need to create a new
component to show the details of each player, but first we can use the Angular CLI to generate an app-routing
module. In this command a couple of modifiers are added; --flat instructs the module to be placed in the app
directory rather than in its own directory, and --module=app registers it within the imports array of the
AppModule.

The key created file is the app-routing.module.ts file. To begin with we can add a couple of routes to
our existing TeamComponent. Note that the key changes are to include the TeamComponent, and then to set

two routes.

import { NgModule } from '@angular/core’;
import { RouterModule, Routes } from '@angular/router';
import { TeamComponent } from './team/team.component’;
const routes: Routes = [

{ path: ", redirectTo: '/team’, pathMatch: 'full' },

{ path: 'team', component: TeamComponent }
l;
@NgModule({

imports: [RouterModule.forRoot(routes)],

exports: [RouterModule]

1
export class AppRoutingModule {}

The intended result is for http://localhost:4200/team to open our existing TeamComponent, while

http://localhost:4200 will be redirected to the same team page. Before this will happen we need to add the

233

<router-outlet> element to the main App Component Template (app.component.html). For this example the
app will display the title, and then whichever route is directed to the router-outlet tags.

<div style="text-align:center">
<h1> {{ title }} </h1>
<router-outlet></router-outlet>

</div>

Testing it out should point both URLs to display the teamlist. To demonstrate routing more effectively
we need to create a new component, where the details of each player will be displayed. While no further
details will be added, the database could easily be extended to store more data such as a photo, ratings etc.
For this example the “captain” feature is removed, as well as the onSelect() event, to be replaced with a link to
the new component. The Angular CLI can be used to create a new component called ‘player’.

import { Component, Onlnit } from '@angular/core’;
import { Player } from '../player";
import { ActivatedRoute } from '@angular/router’;
import { TeamService } from '../team.service';
@Component({
selector: 'app-player’,
templateUrl: ./player.component.html’,
styleUrls: ['./player.component.css']
1
export class PlayerComponent implements Onlnit {
constructor(
private route: ActivatedRoute,
private teamService: TeamService
) {}
ngOnlnit(): void {
this.getPlayer();
}
player: Player;
getPlayer(): void {
const id = +this.route.snapshot.paramMap.get('id');
this.teamService.getPlayer(id)

.subscribe(player => this.player = player);

The player component is similar to the team component, except that it uses the getPlayer(id) method
from TeamService, rather than getTeam(). In order to populate the id parameter, Angular’s ActivatedRoute is

used. The template file adds a navigation link back to the default router, and the input box complete with two-

234

way binding is moved from the teamsheet to the player’s details. Of course a further route would need to be
added to update the database if the player’s name is changed.

<nav>
Display Team
</nav>
<div *nglf="player">Number: {{player.number}} Name: {{player.name | uppercase}}

<input class="input" [(ngModel)]="player.name">

</div>

Finally a further path is added to the app-routing.module.ts file.

‘ { path: 'player/:id', component: PlayerComponent }

The result is two different routes, where the main route shows the teamlist as in Figure 16.10.

() — O X
Y MyApp x
< 2> C | © localhost:4200/team r
England Team
1 : JORDAN PICKFORD 2. KYLE WALKER
4 : ERIC DIER 3 : DANNY ROSE
5 :JOHN STONE 7 : JESSE LINGARD
6 : HARRY MAGUIRE 8 : JORDAN HENDERSON
10 : RAHEEM STERLING 11 : JAMIE VARDY
9 : HARRY KANE 12 : KIERAN TRIPPIER
13 :JACK BUTLAND 15: GARY CAHILL
16 : PHIL JONES 17 : FABIAN DELPH
18 : ASHLEY YOUNG 19 : MARCUS RASHFORD
20: DELE ATILI 14 : DANNY WELBECK
23 : NICK POPE 22 : TRENT ALEXANDER-ARNOLD
21 : RUBEN LOFTUS-CHEEK

Figure 16.10: England Team List View

The second displays details of which ever player is selected as in Figure 16.11.

235

Y} MyApp X

< C | @ localhost:4200/player/12

¥

England Team

Display Team
Number: 12 Name: KIERAN TRIPPIER
Kieran Trippier

Figure 16.11: England Player View

Key Points

e Angularis a front-end framework based on the component/services architecture.

e Angular is significantly different from AngularJS.

e Angular is managed via the Command Line Interface (CLI).

e Components are vital building blocks in Angular, used to display different parts of the screen.

e Each component consists of an object (written in TypeScript), a template (written in HTML) and a
stylesheet (written in CSS).

e The *ngFor directive can be used to loop through an array, while the *nglf directive works like an If
statement.

e Pipes are used to format output in different ways.

e Services are used to separate concerns in development, for example separating the presentation logic
from the data, so data can later be injected into the app.

e The HttpClientModule can be used as a service to request data via Http from a server to inject into an
app.

e Just as a server can handle different requests via different routes, Angular manages routing within the
browser to display different components for different URL requests.

Further Resources

1) The main Angular website can be found at the following link.
https://angular.io/
2) Angular provides an introductory tutorial here:
https://angular.io/tutorial
3) Tutorialspoint has a tutorial on Angular4, which was released in March 2017, here:

https://www.tutorialspoint.com/angular4/angular4_overview.htm

236

Assignment

Now you have all the tools to be set free on web development, and there are so many directions you
can go — it really depends why you wanted to learn web development. By now you should have a calendar
written in PHP, MySQL and JavaScript — why not repeat the project using the MEAN stack?

Another project could be to write blogging software, allowing a user to create, view, edit posts,

without needing to understand any code.

This is similar to a Content Management System, which allows a user manage the content that is

displayed on their website, again without needing to understand the code.

The web is vital for Electronic Commerce, so platforms are needed for merchants to display their

products and allow users to find products to buy.

A social network is a way for people to connect and share posts with each other, with features such as

chatting.

This book has given you a foundation from which you can build. If you look at existing software, you
should now be able to understand how it works and extend it, or if you prefer, you should be ready to begin

one of these projects from scratch.

237

A

<a>
Absolute Link

Access Permissions
ActiveObject

AJAX

ajax()

Alt

Angular

Animation Effects
Apache

API

Append

<app-root>

Arrays (JavaScript)
Arrays (PHP)

Array Functions (PHP)

Arrow Operator (PHP)

<article>

Associative Arrays (JavaScript)
Associative Arrays (PHP)

Attributes

attr()

Audio
Auto_Increment

Background-color
Background-image
Background-position
Background-repeat
Binding

blur()

<body>
body-parser
Boolean

Borders

Box Model

Browser Events
Brute Force Attack
Buttons

Index

238

©

80

157
156
160

218
133
45,184
211
78
221
113
48
59
71
170
114
48

142
172
83

23
23
24
24
221
125

214

48
35,144
36, 144

129
100
53

Callback

Canvas

CAPTCHA
Cascading Style Sheets
charset

children()

chmod()

Class

Class Selectors
Clearing Floats
click()

Collection

Color

Comments (HTML)
Comments (PHP)
Compass
Components
Console

Context Sensitive Selectors
Cookies

S_COOKIE

Cross Site Scripting

D

Database

Date Picker

Dates (PHP)

dblclick()

DELETE (MySQL)

<details>

Dependency Injection

Dialog Box

Doctype

Document Object Model (DOM)
DOM Traversal

<div>

Do...While Statement (JavaScript)
Do...While Statement (PHP)
Draggable

Dreamweaver

Droppable

Drupal

echo

Email
Encryption

eq()

239

133
173
100
12, 222
169
148
80
15
17
35
126
200
21
10
47
201
222
109
21
93,179
94
104

82,195
161

66

126

86

170
231
163
169
31,117,138
150

19

113

51

164
3,19
164
184

46

192
98
152

Escape Character
Events

explode()
Express.js

Fade Effects
Favicon.ico
fetch_array()
fetch_assoc()
fetch_object()

Files (PHP)

File Modes

File System

File Upload

filter()

Filters

find()

findOne()

first()

Flash

Floating Page Elements
Floating Point Numbers
focus()

Font-family
Font-size
Font-variant
Font-weight
<footer>

For Statement (PHP)

For Statement (JavaScript)

Foreach Statement (PHP)
Forms

Form Events

Framework

Functions (JavaScript)
Functions (PHP)

G

Geolocation

GET

get()

$_GET
getElementByld()
Gradients
Grandparents

240

110

125, 189, 228
48

207

130
221
89
89
90
78
78
188
215
152
150
149, 202
203
151
172
33
48
125
14
22
23
23
23
170
51
112
52
53,118
128
208
115
68

177

209

159

54
116,123
176

146

H

<h1>...<h6>
<head>
<header>
hide()

Hover pseudo-class
HTML

HTML Selectors
html()

HTML5

HTTP
Hypertext

<i>
IDs
ID Selectors

If Statement (JavaScript)

If Statement (PHP)
Images

implode()

Include
innerwidth()

Injection (Dependency)

INSERT (MysSQL)
Integer

JavaScript
JQuery
JQuery Ul
JSON

Key=>Value Pair
Keyboard Events

L

LAMP

last()

Icfirst()
Letter-spacing

241

170
124
39

17

141
169

93, 186

10
18
111
50

(o]

48
69
144
231
85
47

107
122
160
109, 156, 185

48
127

45,184
152

48

22

Line-height
Links

Links Array
Links & CSS
Lists & CSS
load()
Localhost
Local Storage

M

MAMP

Margins
Mathematical Functions (PHP)
MEAN Stack
Method (Forms)
Modules
MongoDB

Mouse Events
MVC

MySQL

MySQL Workbench
MySQLi

N

<nav>
Nested Tags

*nglf

*ngFor

Node.js

not()

Notepad

Node Package Manager (NPM)

0]

Objects (PHP)
Operators (JavaScript)
Operators (MongoDB)
Operators (PHP)
outerwidth()

<p>
Padding
Parameters (HTML Tags)

242

22
8,9
115
24
25
158
46
178

45,184
36, 144
64

183

53

186

199

126

184, 214
45, 81, 195
196

87

170

228
226
183
153

190

70
110
204
49
144

35,144

Parameters (JavaScript)
parent()

parents()
parentsUntil()
Passwords

PHP

PHP String Functions
PHP Operators
Phpmyadmin

Pipes
Position:Absolute
Position:Fixed
Position:Relative
Position:Static

POST

post()

S_POST

Prepared Statements
print_r()
Pseudo-class

Radio Buttons

Random Numbers (PHP)
React

readyState

Relative Link

Require

responseTxt

Responsive Design
Routing

<script>

<section>

SELECT (MySQL)

Selectors

Services

Sessions

Session Hijacking

S_SESSION

Semantic Tags

SHA (Secure Hash Algorithm)
Slide Effects

Sorting (PHP)

SQL - Structured Query Language
SQL Injections

statusTxt

243

116
145
147
147
55

44

48

49
82,196
227
18,30
30

29

29
209
159
53
100
54,60
24

119

66

220

157

8

69

159

37

209, 233

107
170
84,198
16

229

95

104

95

170

98

132

63

19

81

100, 103
159

Strings (PHP)

Strings (JavaScript)

String Functions (PHP)

Sublime Text

submit()

<summary>

Superglobal Array

Switch Statement (JavaScript)
Switch Statement (PHP)

T

Tables (HTML)
Tables (MySQL)
<table>

<tbody>

<td>

Text

Text-align
Text-decoration
Text direction
Text-transform
Text-indent

Text Manipulation (JQuery)
<tfoot>

<thead>

Time (PHP)

<title>

Topstyle Lite

<tr>

Traversing the DOM
TypeScript

u

UPDATE (MySQL)
url

UTF-8

\Y

val()

Varchar

Variable (JavaScript)
Variables (PHP)
Video

244

47
109
47,48

129
170
53
112
50

83

0o

22
22
22
22
22
22
140

66

19

145
221

85
187
169

141
83
108
47
172

w

WAMP

Wampserver

Web Workers

WHERE (MySQL)

While Statement (JavaScript)
While Statement (PHP)
width()

Wordpress

Word-spacing

X
xhr

XML
XMLHttpResponse

Z-index

245

45,184
45

180

86

113

51

144
184

22

159
156
156

18

Glossary

AJAX (Asynchronous JavaScript and XML) — A JavaScript programming technique which allows the browser to
send data to, and read data from the server to update part of a page, after it has loaded.

Angular — A Front-end framework based on TypeScript developed mostly by a team from Google.
Apache — An open-source webserver.

API (Application Programming Interface) — A set of methods to facilitate communication between components

of a program.
Array — A simple data structure for managing a collection of elements.
Browser — A software application used for viewing pages across the World Wide Web.

Callback — A function that is sent as a parameter to another function, such that it is executed after the function

has finished executing.
Client — The user’s machine, which sends requests for services offered by the server machine.

CSS (Cascading Style Sheets) — The language which defines the style of HTML elements, which tells the browser
how HTML elements should be displayed.

Cookie — A small piece of data sent by a website and stored on the client’s computer while a user is browsing
a site.

DOM (Document Object Model) — A programming API for HTML documents, defining the logical structure of
elements on a page.

Express.js — A web application framework for Node.js, designed for building applications and APIs.
Framework — A generic set of functionality which can be selectively changed or extended by the developer.
Geolocation — An API for locating a users position, so that location based services can be offered.

GET — A commonly used HTTP Request method used to get data from a server.

HTML (Hyper Text Markup Language) — A core language of the web, used to mark up text by adding a variety
of tags to it.

HTTP (Hyper Text Transfer Protocol) — The core protocol for exchanging hypertext between different

machines.
Hyper Text — Structured text which uses links (hyperlinks) to connect to other pieces of hypertext.

JavaScript — A core programming language used in web development. All browsers support JavaScript, so
initially it was the key language for client-side scripting, while today JavaScript is run in many places, including

on some servers.

246

JQuery — A library of JavaScript functionality which makes writing JavaScript code simpler, particularly for event
handling, DOM manipulations and AJAX.

JSON (JavaScript Object Notation) — A human readable notation for JavaScript objects which is used for
transmitting data objects as well as viewing them.

Localhost — a hostname referring to the same computer, used to make a client machine act like different server

machine.
MongoDB — a document-oriented database program, which stores data as JSON-like documents.

MVC (Model View Controller) — An architectural pattern for developing user interfaces, where the problem is
broken down into 3 parts; a model, or the data, views that dictate how the data should be displayed, and a

controller which responds to user inputs.

MySQL — A relational database management system which uses Structured Query Language to store data in

tables.

Node.js — A JavaScript run time environment that enables JavaScript to be used on the server, rather than just

the browser, so that JavaScript code can be run before a page is sent to the browser.

PHP (Hypertext Pre Processor) — A server side scripting language used to generate hypertext before sending it
to the browser.

POST — A commonly used HTTP Request method used to send data to a server.

SQL (Structured Query Language) — A language for managing data in a relational database. It allows structured

statements to create, read, update and delete items in the database.

TypeScript — A typed superset of JavaScript designed for developing large complex applications, which then

transcompiles into JavaScript.

URL (Uniform Resource Locator) — A web address, or reference to the location of a resource on a computer

network.

247

